平成12年度
食肉に関する
助成研究調査成果報告書

財団法人
伊藤記念財団

VOL. 19
平成12年度
食肉に関する
助成研究調査成果報告書

財団法人
伊藤記念財団
「伊藤記念財団」設立趣意書

私、伊藤傳三は、昭和3年食肉加工業を創業して以来五十有余年の永きにわたり食肉加工品の製造販売に従事して参ったところであります。

この間、昭和47年からは日本ハム・ソーセージ工業協同組合理事長、社団法人日本食肉加工協会理事長、加えて、ハンバーグ・ハンバーガー協会理事長等の重責を担わせていただく等、業界団体の役員を勤めさせていただいたところであります。

こうした中で昭和55年、はからずも勲二等瑞宝章受章という身にあまる栄誉に浴したのでおりますが、受章に際し私自身の過去来し方を振り返り、食肉及び食肉加工業界の行く末に思いを致し、2つの事柄を決意致しました。

第1は、食肉加工団体の指導体制の若返りであり、
第2は、食肉加工業の基礎的研究の充実であります。

諸情勢が激しく変わりつつある中で食肉加工業界をさらに大きく発展させるには、新しいリーダーの登場が望ましいことは論をまちません。また、食肉加工品については、これまでも日本独自の技術開発は行われてきましたものの、いずれも企業内技術であると言っても過言でなく、大学等における基礎的研究の不足が将来の日本の食肉加工業の発展を遅らせるおそれがあり、この現状を打破する必要があると考えたところであります。

以上のような基本的考え方の下に私は、食肉関係団体等の役員を辞すると共に、食肉及び食肉加工に関する基礎的かつ広汎な研究を行い、あるいは助長するための財団の設立を発起するものであります。

昭和56年6月

設立発起人 伊 藤 傳 三
Philosophy Behind the Establishment of
the Ito Foundation

Approximately half of a century has passed since I established a meat packing corporation for commercial products in 1928. While involved in this business, I have had occasion to serve as chairman of the boards of trustees of several organizations related to the meat industry, such as the Ham-Sausage Industrial Association of Japan in 1972, the Meat Packing Industrial Association of Japan, and the Hamburg-Hamburger Association of Japan.

In 1980, unexpectedly, I was highly honored to receive the Order of the Sacred Treasure, Gold and Silver Star from the emperor in acknowledgement of my contributions to the meat industry and improved human nutrition during my career. This illustrious award provided a strong impetus for me to act on my long-standing concern for the future of meat packing industries.

My commitment to the establishment of a new research foundation for the promotion of meat science was based on two fundamental philosophies: first, leadership of the Association of the Meat Packing Industry should be transferred to people with novel ideas and, second, an advanced system for basic research should be established in meat industries. Clearly, fresh leadership is needed in changing situations for intensive development in the meat packing industry. Although some technical product developments have been achieved in certain individual corporations, the lack of basic research in meat science at universities and other research organizations certainly will impede future development of Japanese meat packing industries. It is urgent to end the stagnation in the meat industry through research support.

On the basis of these philosophies, I myself will resign from any official positions in meat-related associations and will establish a new research foundation to support and promote basic and applied research in meat science.

Denzo Ito, Founder
June 1981
事業のあらまし

（目的）
本財団は、食肉に関する研究及び調査を行い、もって畜産業及び食品産業の振興と国民食生活の安定に資することを目的とする。

（事業）
本財団は、上述の目的を達成するため、次の事業を行う。
(1) 食肉の生産、処理、加工等に関する基礎的研究及び調査。
(2) 食肉の生産、処理、加工等に関する研究又は調査を行う大学等の研究機関に対する助成。
(3) 食肉の生産、処理、加工等に関する情報の普及及び広報。

（事業実績）

<table>
<thead>
<tr>
<th>回数</th>
<th>年度</th>
<th>研究調査助成件数</th>
<th>研究調査委託件数</th>
</tr>
</thead>
<tbody>
<tr>
<td>初回</td>
<td>昭和57年度</td>
<td>48件 60,000千円</td>
<td>5件 18,097千円</td>
</tr>
<tr>
<td>2</td>
<td>58</td>
<td>52 54,400</td>
<td>4 12,064</td>
</tr>
<tr>
<td>3</td>
<td>59</td>
<td>60 49,800</td>
<td>7 17,000</td>
</tr>
<tr>
<td>4</td>
<td>60</td>
<td>62 48,000</td>
<td>9 18,100</td>
</tr>
<tr>
<td>5</td>
<td>61</td>
<td>70 53,000</td>
<td>8 11,681</td>
</tr>
<tr>
<td>6</td>
<td>62</td>
<td>79 58,900</td>
<td>2 5,151</td>
</tr>
<tr>
<td>7</td>
<td>63</td>
<td>95 70,500</td>
<td>2 2,764</td>
</tr>
<tr>
<td>8</td>
<td>平成元年度</td>
<td>86 74,250</td>
<td>3 1,900</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>79 60,000</td>
<td>1 500</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>70 50,000</td>
<td>1 2,000</td>
</tr>
<tr>
<td>11</td>
<td>4</td>
<td>86 60,000</td>
<td>2 5,000</td>
</tr>
<tr>
<td>12</td>
<td>5</td>
<td>81 60,000</td>
<td>2 4,000</td>
</tr>
<tr>
<td>13</td>
<td>6</td>
<td>81 60,000</td>
<td>3 4,000</td>
</tr>
<tr>
<td>14</td>
<td>7</td>
<td>83 60,000</td>
<td>2 2,500</td>
</tr>
<tr>
<td>15</td>
<td>8</td>
<td>81 69,100</td>
<td>4 7,000</td>
</tr>
<tr>
<td>16</td>
<td>9</td>
<td>78 58,000</td>
<td>3 5,500</td>
</tr>
<tr>
<td>17</td>
<td>10</td>
<td>82 60,000</td>
<td>3 6,500</td>
</tr>
<tr>
<td>18</td>
<td>11</td>
<td>67 47,000</td>
<td>2 5,000</td>
</tr>
<tr>
<td>19</td>
<td>12</td>
<td>57 41,000</td>
<td>2 16,000</td>
</tr>
</tbody>
</table>

ご挨拶

当伊藤記念財団は、伊藤ハム株式会社の創業者故伊藤専三による愛好の「設立趣意書」に掲げた趣意をもって、去る昭和56年7月3日に農林水産大臣から設立を許可されました財団法人であり、事業の内容は、「事業のあらまし」にあるとおりであります。

おかげ様で当財団は去る7月3日をもちまして、創立20周年を迎えましたが、この間、次第に研究調査助成事業の存在が畜産関係の方々の間に浸透いたしまして、助成希望者数も、初年度の74件から、20年目の平成13年度には、162件の多
Dear Sir:

I am very pleased to send you and your organization a complimentary copy of the research reports of the Ito Foundation. This research foundation was founded by the late Mr. Denzo Ito to advance research in meat science. The research reports are published annually. Unfortunately, the articles are largely in Japanese; however, in the future we hope to contribute to the international development of meat science. Any constructive suggestions or critiques from others involved in meat-related research would be accepted gratefully.

You will find the philosophy behind the establishment of The Ito Foundation described by Mr. Denzo Ito, in the research report of The Ito Foundation, Vol.19 enclosed here. We appreciate any interest you may have in our research efforts.

Sincerely yours,
Dec. 2001
Kenichi Ito
The chief director
The Ito Foundation
目次

排卵の人為支配による牛の効率的胚移植に関する研究
…………………………………堂地 修・*後藤 裕司・*山内 健治・**川田 訓・**条 清司
的場 理子・工藤 茂・***小西 一之・中田 建
(酪農学園大学, *農林水産省家畜改良センター十勝牧場,
同センター新冠牧場, *同センター奥羽牧場)…………… 1

黒毛和種牛の下垂体内黄体形成ホルモンサブユニット
メッセンジャー RNA の発情周期における変化
……………………………………………………川手 憲俊・玉田 尋通・福葉 俊夫・澤田 勉
(大阪府立大学大学院農学生命科学研究科)……………… 6

成長ホルモンとインスリン様成長因子−I 分泌と反芻家畜の繁殖特性に関する研究
一発情期と黄体期における成長ホルモンとインスリン様成長因子−I の分泌特性について一
……………………………………………………橋爪 力・大槻 健治 (岩手大学農学部)……………… 10

ヒトベインティングプローブを用いたウシ体外受精胚の染色体異常検出に関する研究
…………… 小林 仁・*梅津 元昭 (宮城県農業短期大学, *東北大学大学院農学研究科)…………… 15

ラット精巣における新規転写調節因子の機能解析
……………………………………………………本道 栄一 (山口大学農学部)……………… 20

雄マウスの生殖能力に及ぼすカルニチンの効果
……………………………………………………福井 祐一・森 匡・*伊藤 直樹・**鈴木 啓太
(北海道大学大学院農学研究科, *札幌医科大学医学部,
**北海道大学北方生物圈フィールド科学センター)……………… 24

流産を誘発する子宮内サイトカインの変動
……………………………………………………難波 泰治・木曾 康郎 (山口大学農学部)……………… 30

3 倍体ニワトリを用いた動物の大きさを制御する因子の探索
……………………………………………………加納 聖 (岩手大学農学部)……………… 35

DNA 分子プローブを利用したブタ品種の同定法の開発
……………………………………………………山本 博章・*佐藤 静治
(東北大学大学院理学研究科, *伊藤ハム株式会社中央研究所)……………… 39

牛海綿状脳症診断に関する最近の進歩およびトランスジェニックマウス
……………………………………………………小野寺 節 (東京大学農学部)……………… 43

人畜共通感染症としての人のスピロヘータの家畜への感染性に関する研究
……………………………………………………足立 吉数 (茨城大学農学部)……………… 49
リポソーム型経粘膜ワクチンによる鶏サルモネラ症（鶏パラチフス）の予防

…………………………………………渡来 仁（大阪府立大学大学院農学研究科）……………54

肥育 F1子牛への生菌製剤投与による増益および
粪便中コクシジウムオーシスト数への影響
…………………………………………牧村 進（宮崎大学農学部）……………………62

黒毛和牛生産農場における大腸菌 O157 根絶計画

II. 抗生物質および生菌製剤併用による保菌子牛からの志賀菌産生性大腸菌排除試験
…………………………………………末吉 益雄（宮崎大学農学部）…………………67

消化管内に消出すペロ菌産生性大腸菌の飼養学的動態コントロール
…………………………………………小林 泰男（北海道大学大学院農学研究科）…………71

イヌ・ネコの疾病と血漿中の微量元素に関する研究
…………………………………………政岡 俊夫・宮地 俊輔・沈 明浩・*鴨田 英作・印牧 信行
小方 宗次・福岡 秀雄（麻布大学獣医学部，*環境保健学部）……………………75

肥育牛におけるレプチン分泌
…………………………………………矢野 秀雄（京都大学大学院農学研究科）…………81

肉用牛におけるレプチンによる脂肪交雑機構の解明
…………………………………………小原 嘉昭・米倉 真一（東北大学大学院農学研究科）……86

産肉能力検定による和牛改良システムの分析
…………………………………………及川 卓郎（岡山大学農学部）……90

Dark cutting beef 発生に関わる性腺ホルモンの影響 2
…………………………………………青山 真人・杉田 昭栄・*岡村 裕昭
（千葉大学農学部，*独立行政法人農業生物資源研究所）………………97

バイオリアクターによる共役リノール酸合成のための基礎的研究
…………………………………………河原 憲・竹之山 慎一・目 和典・山内 清（宮崎大学農学部）104

反芻胃における共役リノール酸生成と牛肉中への移行に関する研究
…………………………………………田中 桂一（北海道大学大学院農学研究科）109

筋形成過程の骨格筋細胞でのミオシンアイソフォーム発現の制御
…………………………………………山口 高弘・吉澤 大輔・今中 崇博・奈良 英利・渡邊 康一
（東北大学大学院農学研究科）………………116

体脂肪蓄積調節機能を有する牛肉由来成分の検索の為の基礎的研究
…………………………………………長谷川 信・澤野 友信・上曾山 博（神戸大学農学部）121

ラットの生体内脂質分布と代謝に及ぼす牛肉エキスと運動の影響
…… 吉原 弘之・林 利哉・野嶋 一将・池内 義英・伊藤 慎躬・*関口 建
（九州大学大学院農学研究院，*伊藤ハム株式会社ヘルスサイエンス事業部）126

反芻動物唾液腺の自発性唾液分泌機構：K および Cl チャネルの役割
…………………………………………林 美樹夫・高畑 亨・石川 透（北海道大学大学院獣医学研究科）133
妊娠後期母豚への胎盤と豚臓の授与が子豚の発育に及ぼす影響

稲田 立信（宮崎大学農学部）…………………………………………………………141

給与飼料の質の変化が和牛成長ホルモンの分泌パターンに及ぼす影響

……………………………後藤 貴文・服部 貞彰・西村 正太郎・田畑 正志・岩元 久雄
（九州大学大学院農学研究院）……………………………………………………145

乳清タンパク質給与がブロイラーの成長に及ぼす影響

………………………………………………………………………………………………152

発泡酒粕とビール粕から調製した TMR サイレージの貯蔵性と栄養特性

………………………………………………………………………………………………157

南西諸島における新放牧システムの開発と牧畜力の評価に関する研究

………………………………………………………………………………………………164

食味テストと肉質分析による高品質豚肉質の品種間比較

…………鈴木 啓一・柴田 知也・門脇 宏・阿部 博行・豊島 たまき・佐藤 康徳
（宮城県畜産試験場）………………………………………………………………170

熱処理が牛骨格筋内膠原線維に及ぼす影響

………………………………………………………………………………………………177

乾塩ハムの製造とその性質について

………………………………………………………………………………………………182

高齢者の咀嚼機能を考慮した食肉加工品の製造方法に関する研究

………………………………………………………………………………………………188

ボーンマロー（Bone Marrow）の呈味成分の研究

………………………………………………………………………………………………195

食肉製品の発色に及ぼす乳ペプチドの促進効果

………………………………………………………………………………………………201

天然ケーシングの機械特性に及ぼす結合組織の影響

………………………………………………………………………………………………207

米国における畜検査システム（ブタ）と食肉・食鳥肉の衛生管理の検討

………………………………………………………………………………………………214

細菌および真菌による食肉・乳製品の汚染検出のための基礎的研究

………………………………………………………………………………………………218

密封包装乾熱加工肉製品におけるポツリヌス菌の制御法に関する研究

………………………………………………………………………………………………223

L-カルニチンが培養心筋細胞の脂肪酸取り込みおよび ATP 産生に及ぼす影響

………………………………………………………………………………………………228
カルニチン投与によるラットの脂質代謝およびそのmRNAへの影響について ･･･
CONTENTS

Study on the Embryo Transfer after Synchronization of Ovulation in Cattle
Osamu Dochi, *Yuji Goto, *Kenji Yamauchi, **Satoshi Kawata, **Seiji Kume, **Satoko Matoba, **Shigeru Kudo, ***Kazuyuki Konishi and Ken Nakata
(Rakuno Gakuen University and *Tokachi Station, **Nikappu Station and ***Ohu Station, National Livestock Breeding Center) .. 1

Changes of Messenger RNA for Luteinizing Hormone Subunits in the Pituitary of the Japanese Black Cows during the Estrous Cycle
Noritoshi Kawate, Hiromichi Tamada, Toshio Inaba and Tsutomu Sawada
(Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University) .. 6

Studies on the Relationship between Growth Hormone and Insulin-like Growth Factor-I Secretions and Reproductive Characteristic in Ruminants
—Characteristics of plasma growth hormone and insulin-like growth factor-I profiles during estrous and luteal phase—
Tsutomu Hashizume and Kenji Ohtsuki
(Faculty of Agriculture, Iwate University) ... 10

Studies on Detection of Chromosomal Aberration of Bovine Embryos Fertilized In Vitro Using Human-specific Painting Probe
Jin Kobayashi and *Motoaki Umezu
(Miyagi Agricultural College and *Graduate School of Agricultural Science, Tohoku University) 15

Functional Analysis of a Novel Transcription Factor in Rat Testis
Eiichi Hondo
(Faculty of Agriculture, Yamaguchi University) .. 20

Effect of Carnitine on the Reproductivity of the Male Mouse
Yu-ichi Fukui, Tadashi Mori, *Naoki Itoh and **Keita Suzuki
(Graduate School of Agriculture, Hokkaido University, *Sapporo Medical University and **Field Science Center, Hokkaido University) ... 24

Changes of Cytokines in Abortion at the Feto-maternal Interface
Yasuharu Namba and Yasuo Kiso
(Faculty of Agriculture, Yamaguchi University) .. 30

The Search of the Factors Controlling the Body Size of Animals
Kiyoshi Kano
(Faculty of Agriculture, Iwate University) ... 35

Development of Molecular Probes Identifying Porcine Genetic Stocks
Hiroaki Yamamoto and *Seiji Sato
(Graduate School of Science, Tohoku University and *Central Research Institute, Itoham Foods Inc.) 39
Recent Progress in Diagnosis for Bovine Spongiform Encephalopathy, and Studies in Transgenic Mice
Takashi Onodera
(Faculty of Agriculture, University of Tokyo) ... 43

Studies on the Infectivity of Human Intestinal Spirochetes to Animals and Birds
Yoshikazu Adachi
(College of Agriculture, Ibaraki University) .. 49

Protection against Salmonellosis in Chicken by Liposomal Oral Vaccine
Shinobu Watarai
(Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University) .. 54

Effect of Supplementation of Probiotics to F1 Calves on the Body Weight Gain and Oocysts per Gram of Coccidium in Feces
Susumu Makimura
(Faculty of Agriculture, Miyazaki University) .. 62

Project for the Eradication of Escherichia coli O157 in the Japanese-black-cattle Farm
II. The eradication of Shiga toxin-producing E. coli in cattle by combined method of an antibiotic and a probiotics
Masuo Sueyoshi (Faculty of Agriculture, Miyazaki University) 67

Dietary Control of Verotoxin-producing Escherichia coli in Digestive Tracts of Animals
Yasuo Kobayashi
(Graduate School of Agriculture, Hokkaido University) 71

The Relationship between Plasma Trace Elements Values and Diseases of Dog and Cat
Toshio Masaoka, Syunsuke Miyachi, Ming-Hao Shen, *Eisaku Shimada, Nobuyuki Kanemaki, Munetsugu Ogata and Hideo Fukuoka
(School of Veterinary Medicine and *College of Environmental Health, Azabu University) .. 75

Leptin Secretion in Fattening Cattle
Hideo Yano
(Graduate School of Agriculture, Kyoto University) 81

Mechanism of Fat Marbling in Muscle by Leptin in Japanese Black Cattle
Yoshiaki Obara and Sin-ichi Yonekura
(Graduate School of Agriculture, Tohoku University) 86

An Analysis of Wagyu Improvement Program by the Performance Testing
Takuro Oikawa
(Faculty of Agriculture, Okayama University) ... 90

Effects of Gonadal Hormones on Occurrence of Dark Cutting Beef 2
Masato Aoyama, Shoei Sugita and *Hiroaki Okamura
(Faculty of Agriculture, Utsunomiya University and *National Institute of Agrobiological Sciences) ... 97

Synthesis of Conjugated Linoleic Acid by Use of Bioreactor
Satoshi Kawahara, Shin-ichi Takenoyama, Kazunori Sakka and Kiyoshi Yamauchi
(Faculty of Agriculture, Miyazaki University) .. 104
Study on Conjugated Linoleic Acid Formation in the Rumen and Transfer to Beef
Keiichi Tanaka
(Graduate School of Agriculture, Hokkaido University) ... 109

Regulation of Myosin Isoform Expression in Skeletal Muscle Cells during Myogenesis
Takahiro Yamaguchi, Daisuke Yoshizawa, Takahiro Imanaka, Hidetoshi Nara and Kouichi Watanabe
(Graduate School of Agricultural Science, Tohoku University) .. 116

Basic Study on Search of Regulatory Meat Components of Body Fat Accumulation
Shin Hasegawa, Tomonobu Sawano and Hiroshi Kamisoyama
(Faculty of Agriculture, Kobe University) .. 121

Effect of Beef Extract and Exercise on the Distribution and Metabolism of Lipids in Rat Body
Hiroyuki Yoshihara, Toshiya Hayashi, Kazumasa Nodake, Yoshihide Ikeuchi, Tatsumi Ito and *Takeshi Sekiguchi
(Graduate School of Agriculture, Kyushu University and *Itoham Foods Inc.) 126

Mechanisms of Spontaneous Salivary Secretion in Ruminants: Role of K+ and Cl- Channels
Mikio Hayashi, Toru Takahata and Toru Ishikawa
(Graduate School of Veterinary Medicine, Hokkaido University) .. 133

Placentaphagia by Mother Pigs Promotes the Growth of their Piglets
Tatsunobu Sonoda
(Faculty of Agriculture, Miyazaki University) ... 141

Influence of Feed Quality on Pulsatile Release Patterns of Growth Hormone in Japanese Black Cattle
Takafumi Gotoh, Masa-Aki Hattori, Shotaro Nishimura, Shoji Tabata and Hisao Iwamoto
(Faculty of Agriculture, Graduate School, Kyushu University) ... 145

The Effect of Whey Protein on Growth Performance in Broilers
Takako Awan
(Faculty of Life and Environmental Science Shimane University) ... 152

Ensiling Characteristics and Feeding Value of Total Mixed Ration Silage Prepared with Residues of High and Low Malt Liquor (Beer and Happo-shu) Production
Naoki Nishino
(Faculty of Agriculture, Okayama University) ... 157

Studies on the Development of New Grazing System and Its Assessment of Carrying Capacity in South-western Islands in Japan
Yasuhiro Kawamoto
(Faculty of Agriculture, University of the Ryukyus) ... 164
Breed Comparison of High Meat Quality in Pigs by Eating Quality Test and Meat Quality Analysis
Keiichi Suzuki, Tomoya Shibata, Hiroshi Kadowaki, Hiroyuki Abe, Tamaki Toyoshima and Yasunori Sato
(Miyagi Prefecture Animal Industry Experiment Station) .. 170

The Immunohistochemical Property of Intramuscular Connective Tissue — The influence of cooking —
Shoji Tabata, Shotaro Nishimura and Hisao Iwamoto
(Faculty of Agriculture, Graduate School, Kyushu University) .. 177

Manufacturer of Dry-cured Ham and Its Properties
Masayuki Mikami, Mitsuo Sekikawa and Ken-ichiro Shimada
(Ohiro University of Agriculture and Veterinary Medicine) .. 182

Studies on Processing Methods of Restructured Meat Considering with Elderly Mastication
Hiro Ogoshi
(Japan Women's University) .. 188

Taste-active Components in Bone Marrow Extracts
Shinya Fuke, *Jun-ichi Wakamatsu and **Masao Fujimaki
(Faculty of Education, Tokyo Gakugei University, *Central Research Institute, Itoham Foods Inc. and **Research Institute of Meat Functions) .. 195

Effect of Milk Peptides on the Acceleration of Color Formation in Meat Products
Ryoichi Sakata and Hidetoshi Morita
(School of Veterinary Medicine, Azabu University) .. 201

Effect of Connective Tissue on Mechanical Properties of Natural Hog and Sheep Casings
Tadayuki Nishiumi, Yuko Sato, Atsushi Suzuki and *Ryoichi Sakata
(Faculty of Agriculture, Niigata University and *School of Veterinary Medicine, Azabu University) ... 207

Investigation of Swine Slaughter Inspection System and Sanitation Management of Meat and Poultry
Seijun Ishikawa, Takeru Urushibata and Hisafumi Ikawa
(National Meat Inspection Council) .. 214

Priminary Study of Detecting System for Contamination due to Bacteria and Fungi in Meats and Dairy Products
Teruo Ikeda and Masayuki Funaba
(School of Veterinary Medicine, Azabu University) .. 218

Control of Clostridium botulinum in Meat Products Pasteurized in Hermetically Sealed Containers
Shunji Kozaki
(Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University) .. 223
Effect of L-carnitine on Utilization of Fatty Acid and ATP
Production in Cultured Cardiac Myoblasts
Takanori Nishimura, *Jun-ichi Wakamatsu, Ryuichi Tatsumi and Akihito Hattori
(Graduate School of Agriculture, Hokkaido University and
*Central Research Institute of Itoham Foods Inc.) ... 228

Effect of L-carnitine on Lipid Metabolism and the mRNA Levels in Rats
Michihiro Fukushima, Ken-ichiro Shimada, Masuo Nakano
and *Jun-ichi Wakamatsu
(Obihiro University of Agriculture and Veterinary Medicine and
*Central Research Institute of Itoham Foods Inc.) ... 233

Effects of Exercise Strength and Dietary Meat Protein on Immune Function
Kazumi Yagasaki
(Faculty of Agriculture, Tokyo Noko University) ... 240

Effect of Beef-extracted Substance Supplementation on the
Lipid Metabolism during Ultra-endurance Running
Masayuki Watanabe
(Tokyo Gakugei University) ... 245

Effect of Meat on Blood Pressure and Stroke in Stroke-prone
Spontaneously Hypertensive Rats
Yukio Yamori
(Graduate School of Human and Environmental Studies, Kyoto University) 251

Effects of Meat uptake on the Protection against Neuronal Death
Akikazu Takada, Yumiko Takada, Tetsumei Urano, Hayato Ihara and Nobuo Nagai
(Hamamatsu University, School of Medicine) ... 256

Purification of ACE Inhibitory Peptide and Search of Biologically
Active Components in Animal Bone Constituents
Michio Muguruma, Ryosuke Kamishima and Satoshi Kawahara
(Faculty of Agriculture, Miyazaki University) ... 262

Studies on Improvement of Alcoholic Liver Damage by Feeding of
Animal By-products
Tetsuji Nagao and *Koji Nakade
(Food and Drug Safety Center and *Itoham Foods Inc.) .. 270

Screening of the Physiologically Active Peptides by Cell Culture System
Satoshi Nagaoka
(Faculty of Agriculture, Gifu University) ... 277

Study on the Effect of Bovine Costal Cartilage Extract on Skin Condition
Shigeharu Fukunaga, Fumio Nakamura and *Ken Sekiguchi
(Graduate School of Agriculture, Hokkaido University and *Itoham Foods Inc.) 282
Direct Sale of Tankaku Beeves from Farms and an Activation in Hilly and Mountainous Areas
Yasuyuki Shikata and Shigeru Oki
(School of Veterinary Medicine, Azabu University) ... 288

System Construction for Recycling Use of Organic Regional Resources in Livestock Industry
Satoshi Kai
(Faculty of Agriculture, Kyushu University) ... 293

The Consumption Trend of a Livestock Product, and the Selling Strategy of a Distribution Industry —The case study of co-op sanchoku—
Shigeru Ooki
(School of Veterinary Medicine, Azabu University) ... 302

Survey on Meat and Meat Products on the Market of Several Countries in South America and Reports on the 46th International Congress of Meat Science and Technology
Michio Muguruma
(Faculty of Agriculture, Miyazaki University) ... 309
排卵の人为支配による牛の効率的胚移植に関する研究

Study on the Embryo Transfer after Synchronization of Ovulation in Cattle

Osamu Dochi,*Yuji Goto,*Kenji Yamauchi,**Satoshi Kawata,**Seiji Kume,**Satoko Matoba,**Shigeru Kudo,**Kazuyuki Konishi and Ken Nakata
(Rakuno Gakuen University and *Tokachi Station,**Nikappu Station and ***Ohu Station, National Livestock Breeding Center)

The objective of the present study was to evaluate the practicability of the ovulation synchronization using GnRH and PGF\(_{2\alpha}\) for embryo transfer recipients in cattle. Dairy cows (n=30), beef heifers and cows (n=76) were treated with an intramuscular injection of 100 \(\mu\)g of GnRH at a random stage of the estrous cycle. Seven days later, the cattle received PGF\(_{2\alpha}\) to regress the corpora lutea (CL). Forty-eight hours later, cows and heifers received a second injection of 100 \(\mu\)g GnRH. Ovarian structures were monitored by trans-rectal ultrasonography (USG) from the second injection of GnRH until ovulation occurred and again at the time of embryo transfer. There were no significant differences in follicle size, CL size, plasma progesterone and estrogen levels between in ovulation synchronized group treated with GnRH and PGF\(_{2\alpha}\) and estrus synchronized group treated with PGF\(_{2\alpha}\) or natural estrus group. Dairy cows (n=25), beef cows and heifers (n=22) in which ovulation was monitored by USG or by rectal palpation, ovulated within 48 hours after the second injection of GnRH.

There were no significant differences in embryo transfer rate and pregnancy rate between in ovulation synchronized group treated with GnRH and PGF\(_{2\alpha}\) and estrus synchronized group treated with PGF\(_{2\alpha}\) or natural estrus group. The present study demonstrated that the synchronization of ovulation in cattle using GnRH and PGF\(_{2\alpha}\) can be effectively applied to an embryo transfer program in cattle.

1. 目 的

近年、牛の胚移植技術は急速に進展し、肥育系統牛生産や育種改良に盛んに利用されるようになっ
た。また、体外受精技術の進展によりと殺牛の卵巣や生体の卵巣からも胚生産が可能となり、胚移植
技術の利用方法は多様化してきている。しかし、胚移植の受胎率は順調に向上しているとは言えな
い状況にある。また、農家一戸当たりの飼養頭数の増加に伴い管理作業に要する時間が増え、一方で繁殖管理に充てる時間の減少による受胎率低下が指摘されている。そのため、今後、胚移植技術を効果的に利用するためには省力的で効率的な胚移植システムの構築が重要である。

胚移植を計画的に行うためには、PGF\(_{2\alpha}\) 製剤による発情同期化を行う必要がある。しかし、
PGF₂α製剤を用いた発情同期化法では発情発現までの日数に２〜５日のばらつきがあるため③, PGF₂α製剤を用いて受精卵の発情同期化を行っても必ずしも効率的な胚移植は達成されていない。最近, 性腺刺激ホルモン放出ホルモン（GnRH）とプロスタグランディン（PGF₂α）を用いて排卵を同期化したのちに人工授精を行う方法が報告されている③〜⑤。この排卵同期化法の胚移植への応用に関する報告は少なく、十分な検討が行われていない。著者ら①は、GnRH と PGF₂α を用いる排卵同期化法について基礎的な検討を行い、胚移植における排卵同期化法の有効性を明らかにした。本研究では、実験頭数を増やし排卵同期化後の排卵時期、黄体形成、移植への供用率および受胎率等について検討し、効率的な胚移植システムの構築を目的とした。

2. 材料および方法

2.1 供試牛および供試薬
実験には、ホルスタイン種経産牛64頭、日本短角種経産牛および経産牛41頭および肉用牛経産牛（アバディーンアンガス種、ヘレフォード種、マレーグレイ種、褐毛和種）132頭の3群（合計237頭）を用いた。
実験に用いた薬剤は、PGF₂α製剤がクロプロステノール（エストラメイト、住友製薬）およびエチプロストントロメタミン（プロスタペットC, 三共エール薬品）、GnRH 製剤が酢酸フェルチレリン（スボルネン、デンカ製薬）である。PGF₂α製剤の1頭1回当たりの投与量は、ホルスタイン種経産牛およびエチプロストントロメタミン5 mg を、肉用牛にはクロプロステノール750 μg を筋肉内に投与した。GnRH 製剤は1頭1回当たり100 μg を筋肉内に投与した。

2.2 排卵同期化法および発情同期化法
排卵同期化は、Pursley et al.③の方法に準じて行った。すなわち発情周期の任意の時期に GnRH を投与し、その後7日目に PGF₂α を投与した。PGF₂α 投与後48時間目に2回目のGnRH を投与した。PGF₂α製剤投与による発情同期化は、黄体期にある牛について直腸検査を行い機能的黄体の認められたものに PGF₂α製剤を投与した。

2.3 卵巣の観察
供試牛の卵巣は、5または7.5MHzのブローを接続した超音波断層装置（ALOKA 500 および900型）を用いて観察し、発情時の卵胞長径、胚移植時の黄体長径の計測および排卵について観察した。卵胞および黄体の長径の計測は、卵胞および黄体の最も大きい断面像をモニター上に抽出し画像を固定し、超音波断層装置のキャリバー機能を利用して測定した。供試牛の一部は2回目のGnRH 投与後、24、48時間後まで直腸検査あるいは超音波断層装置を用いて排卵の有無を調べた。発情は朝夕の2回の観察を行って調べた。一部の牛では発情発見補助器具（ヒートマウントディテクター）も併用して発情観察を行った。

2.4 血中プロジェステロンおよびエストロジェンの測定
排卵同期化を行ったホルスタイン種経産牛および日本短角種の一部の牛について、2回目のGnRH 投与日（発情時）および7または8日目（胚移植時）にヘパリン加真空採血管を用いて頭静脈または尾静脈より血液を採取した。また、PGF₂α製剤投与による発情同期化および自然発情牛についても、発情時および移植時に上記と同様に血液を採取した。採取した血液は直ちに4℃に保存し、2時間以内に3,000rpm, 20分遠心し血漿を分離した。血漿はホルモン測定まで-20℃で凍結保存した。ホルモン測定はRIA法で行った。

2.5 胚移植
胚は、過剰排卵卵起置器を施した供胚牛（ホル
3. 結果および考察

排卵同期化、発情同期化および自然発情におけ
る胚移植頭数、胚移植実施率および受胎頭数を
Table 1 に示した。いずれの試験群においても、
受胎牛の処置方法の違いによる移植実施率および
受胎率に差は認められなかった。排卵同期化を行
ったホルスタイン種無角産牛において良好な受胎
率が得られることは報告されている。45 本研究
でも、排卵同期化を行ったホルスタイン種の受胎
率は PGF2α 製剤投与による発情同期化後の受胎
率と同等の良好な受胎率が得られた。一方、肉用
牛においても排卵同期化の受胎率は、PGF2α 製剤
投与による発情同期化および自然発情の受胎率と
同等であった。

排卵同期化牛の排卵時期をホルスタイン種（25
頭）と日本短角種（22頭）について調べた結果、
2 回目の GnRH 投与後 24 時間以内に排卵した割
合はそれぞれ 28% および 31%、25 〜 48 時間に排卵
した割合はそれぞれ 72% および 69% であった。本
研究における排卵時間は既報1 〜 3 と同様の結果で
あり、GnRH と PGF2α を用いた排卵同期化法は
効率的に排卵を誘起できることが再確認された。
PGF2α 単独投与による発情同期化では、発情発現
までの日数にばらつきのあることが知られている
が5、本研究でも同様に PGF2α 製剤を用いて発情
同期化した肉用牛では、PGF2α 投与から発情発現
までの日数 2 〜 5 日で顕がみられた。これらの結
果から、GnRH と PGF2α を用いた排卵同期化処
置は PGF2α を用いた発情同期化処置に比べて計
画的かつ効率的な胚移植が可能であることが示さ
れた。

ホルスタイン種経産牛の排卵同期化牛および自
然発情牛の発情時の卵胞長径および移植時黄体
長径について Table 2 に示した。排卵同期化した
牛の発情時の卵胞長径および移植時黄体長径は、

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Results of ovulation and estrus synchronization in cattle using GnRH and PGF2α or PGF2α</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
<td>Treatment¹</td>
</tr>
<tr>
<td>Dariy</td>
<td>OV-sync</td>
</tr>
<tr>
<td></td>
<td>Natural estrus</td>
</tr>
<tr>
<td>Beef</td>
<td>OV-sync</td>
</tr>
<tr>
<td></td>
<td>EST-sync</td>
</tr>
<tr>
<td>Beef</td>
<td>OV-sync</td>
</tr>
<tr>
<td></td>
<td>EST-sync</td>
</tr>
<tr>
<td></td>
<td>Natural estrus</td>
</tr>
</tbody>
</table>

¹: OV-sync: Ovulation synchronization, EST-sync: Estrus synchronization.
²: 100× (No. of transfers/No. of animals).
³: 100× (No. of pregnancies/No. of transfers).
Table 2 Follicle and corpus luteum sizes in dairy cows treated with GnRH and PGF₂α

<table>
<thead>
<tr>
<th>Treatment</th>
<th>No. of cows</th>
<th>Size of follicle (cm)</th>
<th>Size of corpus luteum (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OV-sync</td>
<td>25</td>
<td>1.8±0.1*</td>
<td>2.6±0.5**</td>
</tr>
<tr>
<td>Natural estrus</td>
<td>34</td>
<td>1.8±0.1</td>
<td>2.7±0.1</td>
</tr>
</tbody>
</table>

* Mean±SE
** Twenty one cows were measured.

いずれも自然発情牛に比べて差がなかった。また、肉用牛の移植時の黄体長径も測定したところ、排卵同期化、発情同期化および自然発情のそれぞれの平均長径は2.5cm、2.7cmおよび2.7cmで差は認められなかった。

ホルスタイン種および日本短角種の発情時および移植時の血中プロゲステロン値およびエストロジェン値について Table 3 に示した。いずれの群においても正常範囲の血中プロゲステロン値およびエストロジェン値を示した。しかし、排卵同期化したホルスタイン種経産牛の発情時のエストロジェン値は自然発情牛に比べて有意に高い値を示し、移植時のプロゲステロン値は有意に低い値を示した（P<0.05）。肉用牛においても有意でないものの排卵同期化した牛の発情時のエストロジェン値は発情同期化に比べてやや高かった。排卵同期化した牛の発情時のエストロジェン値が高かった理由は、採血時の発情ステージが異なっていたことが考えられた。さらに、排卵同期化したホルスタイン種経産牛の移植時のプロゲステロン値が自然発情に比べて高かった理由として、黄体の発育ステージの違いが推測された。しかし、いずれも受胎率に差がみられなかったことから、血中エストロジェンとプロゲステロンの差は胚移植の受胎率に影響を与えるような差ではなかったと考えられた。これらのことから、GnRH とPGF₂αを用いた排卵同期化は、品種や産歴を問わず正常な卵巣発育・排卵・黄体形成がなされることが明らかになった。

排卵同期化において胚移植に供用できなかった牛がみられたが、その理由は不排卵。1回目のGnRH 投与からPGF₂α投与までの間に発情したため、発情が遅延するなど不規則な発情発現および黄体の形成不良が主であった。本研究では、排卵同期化後の不規則な発情発現や黄体形成不良の原因を明らかにできなかった。今後、これら的原因については詳細な検討が必要である。

以上の結果より、GnRH とPGF₂αを用いた排卵同期化法はPGF₂α単独投与法による発情同期化法に比べて、効率的かつ計画的に排卵を誘起できる

Table 3 Progesterone and estrogen levels in dairy and beef cattle treated with in cattle using GnRH and PGF₂α or PGF₂α

<table>
<thead>
<tr>
<th>Breed</th>
<th>Treatment¹</th>
<th>No. of animals</th>
<th>Day of estrus (ng/ml)</th>
<th>Day of embryo transfer (ng/ml)</th>
<th>Day of embryo transfer (pg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dairy</td>
<td>OV-sync</td>
<td>17</td>
<td>0.2±0.0*</td>
<td>4.3±0.4*</td>
<td>3.2±0.2*</td>
</tr>
<tr>
<td></td>
<td>Natural estrus</td>
<td>34</td>
<td>0.3±0.2</td>
<td>2.7±0.3*</td>
<td>3.1±0.2*</td>
</tr>
<tr>
<td>Beef</td>
<td>OV-sync</td>
<td>9</td>
<td>0.2±0.2</td>
<td>6.0±1.2</td>
<td>3.0±0.2</td>
</tr>
<tr>
<td></td>
<td>EST-sync</td>
<td>9</td>
<td>0.2±0.2</td>
<td>3.6±0.7</td>
<td>2.8±0.28</td>
</tr>
</tbody>
</table>

¹: OV-sync: Ovulation synchronization, EST-sync: Estrus synchronization.
²: Different superscripts represents significant difference (p<0.05).
*Mean±SE
きることが明らかになった。また、排卵同期化後の胚移植における受胎率は PGF2α 単独投与法による発情同期化牛および自然発情牛と同等であることも明らかになった。さらに、排卵同期化法を用いることにより計画的に胚移植を行うことができ、効率的な育種改良プログラムの実行や農家における省力的な胚移植が可能になると考えられる。

4. 要約

性腺刺激ホルモン放出ホルモン（GnRH）と PGF2α を用いた受胚牛の排卵同期化における有効性を検討した。実験には、ホルスタイン種経産牛、肉用牛の未経産牛および経産牛合計 327 頭を用いた。排卵同期化は発情周期に関係なく発情周期の任意の時期に GnRH を投与し、その後 7 日目に PGF2α を投与した。PGF2α 投与後 4 日目に 2 回目の GnRH を投与した。排卵同期化に伴う卵胞発育、排卵時期、黄体形成について超音波断層装置および直腸検査による卵巢観察および血中プロエストロン値、エストロジェン値の測定を行い、PGF2α 投与による発情同期化および自然発情牛との比較を行った。排卵同期化後の胚移植への供用率および受胎率は、PGF2α 投与による発情同期化および自然発情と同等であった。排卵同期化牛の卵胞発育、黄体形成、血中プロエストロン値およびエストロジェン値は PGF2α 投与による発情同期化および自然発情牛と差がなかった。以上のことから、GnRH と PGF2α を用いた排卵同期化法は、効率的な胚移植が可能であることが明らかになった。

文 献
Changes of Messenger RNA for Luteinizing Hormone Subunits in the Pituitary of the Japanese Black Cows during the Estrous Cycle

Noritoshi Kawate, Hiromichi Tamada, Toshio Inaba and Tsutomu Sawada
(Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University)

Changes in the concentrations of LH subunit messenger ribonucleic acids (mRNAs) and in the LH content of the anterior pituitary of Japanese Black beef cattle were studied during the estrous cycle. Japanese beef cows were classified according to the expected day of the estrous cycle: Stage I (early luteal phase, Days 1-4; Day 1 = day of ovulation), Stage II (early-mid-luteal phase, Days 5-10), Stage III (late-mid-luteal phase, Days 11-17) and Stage IV (follicular phase, Days 18-20), according to the morphology of the ovaries. The anterior pituitaries of the cows were collected and the levels of α and LHβ subunit mRNAs were determined by slot blot analyses. The LH content of the anterior pituitary was measured by radioimmunoassay. The level of α subunit mRNA in the pituitary of cows was highest in Stage I and decreased significantly by Stage II (P<0.05); thereafter it tended to increase.

The level of LHβ subunit mRNA did not change significantly during the estrous cycle. The LH content of the pituitary of cows was low in Stage I and tended to increase by Stage II, then to decrease from Stage II to III, and to increase significantly from Stage III to IV (P<0.05). These results suggest that the highest levels of gene expressions of α subunit in the anterior pituitary occur in the early-luteal phase of beef cows, while the LH content is increased most in the follicular phase. The enhanced gene expressions of common α subunit in the early-luteal phase could be important in replenishing the bovine anterior pituitary with LH, which is depleted of hormone by the LH surge or the enhanced pulsatile release.

1. 目的

黄体形成ホルモン（LH）は牛の卵泡の成熟,排卵および黄体の発育と維持を調節している1,2。牛の発情周期においてはLHは未排卵中にパルス状に放出されること3,また排卵前には10時間以上に及ぶ大量放出（サージ）が生じること4が報告されているが,下垂体内でのLHの合成とその調節機構に関しては不明な点が多い。

LH は α および β の2種の異なるサブニュート構成される糖タンパク質ホルモンであることが知られている5。αサブニュートはLH,卵胞刺激ホルモン（FSH）および甲状腺刺激ホルモン（TSH）の3種の糖タンパク質ホルモンに
共通のものであるが、一方βサブニュットはそれらのホルモンごとに異なる構造を示し、それによっって各々のホルモンに特異的な生物学活性が付与されることが明らかにされている。性腺刺激ホルモンサブニュットのメッシンジャーRNA（mRNA）の定常状態量は同ホルモンサブニュットの生合成において重要な役割を果たしており、おそらく性腺刺激ホルモン恒常性維持の重要な調節部位であることが示唆されている。

本研究は黒毛和種牛の下垂体内のLH合成調節機構の一端を解明する目的で、発情周期における下垂体内LHサブニュットmRNA定常状態量およびLH含量の変化について検討した。

2. 方 法

2.1 供試動物

25頭の黒毛和種牛の下垂体前葉および卵巣を食肉処理場で採取し、直ちに液体窒素で凍結して、総RNAの抽出までで-70℃で保存した。発情周期はIrelandらの方法により7)、卵巣の形態から4つの周期に分類した。それらの周期は1期（黄体初期）、2期（黄体期）、3期（黄体期）、および4期（卵胞期）で、それぞれ発情周期の1～4日（排卵日を0日とする）、5～10日、11～17日および18～20日に相当する。

2.2 mRNA測定法

総RNAはRNA Extraction Kit（Amersham Pharmacia Biotech, USA）を用いて抽出した。総RNA濃度は分光光度計の吸光度から算定した。プロープの作成は、牛のαおよびLHβサブニュットのcDNAを銅型として、Muliprime Labelling Kit（Amersham Pharmacia Biotech, USA）を用いて、[α-32P]-dCTPを取り込みさせて、実施した。αおよびLHβサブニュットのmRNA量はスロットプロットハイブリダイゼーション法を用いて実施した。総RNA1μgをSlot Blot Apparatus（Minifold II, Schleicher & Schuell Inc., USA）のスロット内に分注した。プロットは42℃で2時間のプレハイブリダイゼーションを行い、引き続いて[32P]-αあるいはLHβサブニュットのcDNAプロープを加えて、42℃で24時間のハイブリダイゼーションを実施した。ハイブリダイゼーション後のプロットは2×SSPと0.1%SDSを含む溶液で室温で15分間の洗浄を2回実施し、さらに0.1×SSPEと0.1%SDSを含む溶液で50℃で15分間の洗浄を2回実施した。洗浄したプロットは室温で2日間、X線フィルムに感光させた。得られたバンドの相対的濃度はスキャナーで読みとり、NIHimage1.61で分析した。

2.3 LH含量測定法

下垂体前葉片を氷冷したホモジナイス用緩衝液内で組織100mg当たり1mlの濃度でホモジナイズを実施した。このホモジネートを20,000×g, 4℃30分間の遠心分離を実施し、その上清をLH測定値まで-20℃で保存した。上清中のLH濃度は既報のラジオイノマーアッセイ法で測定した。

LH測定の測定内変動係数は8%未満であった。すべてのサンプルは1回で測定した。

2.4 統計処理

αおよびLHβサブニュットのmRNA量、およびLH含量の各発情周期における差は分散分析法とそれに続くFisher’s protected least-significant difference post-hoc分析法により実施した。この統計処理の実施に当たってはStat View®コンピュータープログラムを用いて行った。

3. 結果と考察

黒毛和種牛の下垂体前葉内LHサブニュットのmRNA量およびLH含量の各発情周期の変化についてFig.1に示した。下垂体内αサブニュ
方, 下垂体前葉内 LH 含量は黄体初期から開花期前半へと増加した。これらの結果は, 下垂体前葉内において, α サブユニットの mRNA 量増加後に LH の生合成が続き, LH 含量の増加をもたらすことを示唆している。黄体発育初期の α サブユニットの遺伝子発現量の亢進は, LH サージもしくは LH パレス状放出の増加による下垂体内 LH 貯蔵の枯渇に続いて起こり, LH 合成によってその補充を行うものと解釈される。めん羊では視床下部由来の GnRH のパルス状放出の頻度の上昇が下垂体内の α サブユニットの遺伝子発現量を増加させることが報告されているので 9), GnRH パルスの頻度上昇によるものなのかかもしれない。また黄体開花期前半にみられた同サブユニットの mRNA 量の減少は, 黄体発育に伴うプロジェステロン濃度の増加がもたらす GnRH パルス頻度減少 10), あるいは第一番目の卵胞波の出現に伴うエストロジエン濃度の増加によって 11, 12), 生じる可能性が推察される。

本研究のデータは, 黒毛和種牛の下垂体内 LHβ サブユニットの遺伝子発現量は, α サブユニットの遺伝子発現とは異なり, 黄体初期から開花期前半へは有意な変化を示さなかった。本研究結果で得られた発情周期の初期における α サブユニットの遺伝子発現量の著増は, 下垂体前葉の共通 α サブユニットの補充は LHβ サブユニットの場合に比較して必要性が高い, ということを示唆しているのかもしれない。牛およびめん羊においては, 性腺刺激ホルモンサージ後には LH のみならず FSH の下垂体前葉内含量は枯渇することが報告されており 13, 14), これが発情周期の初期における共通 α サブユニットの遺伝子発現著増を招来する可能性が考えられる。

本研究において, 黒毛和種牛の下垂体前葉内 LH 含量は黄体開花期の後半から卵胞期へと有意に増加した。この結果は下垂体内 LH 含量の増

Fig. 1 Changes in the steady-state levels of α (A) and LHβ (B) mRNAs and the LH content (C) in the anterior pituitary of beef cows during the estrous cycle. Results are expressed as mean ± SEM (n = 4). Differing superscripts associated with bars are significantly different (P < 0.05). The significant differences were examined by Fisher’s protected least-significant difference post-hoc analysis, as described in Statistical analysis.

图 1 期 I 期における α (A) 和 LHβ (B) mRNA 和 LH 含量 (C) 在前叶的变化。结果以平均值 ± 标准误差 (n = 4) 表示。不同条带有显著差异 (P < 0.05)。显著差异为通过 Fisher’s 保护的最小显著差异后遗传分析，如在统计分析所述。
加は LH サージを惹起するのに重要である可能性を示唆している。牛の下垂体内 LH 含量は黄体開花期から LH サージ前の卵胞期にかけて増加し、LH サージ後に著しく減少することが報告されており15,19）。 本研究成績はこれらの結果に一致していた。牛の LH サージ前後における下垂体内 LH サブニュート mRNA 量と LH 含量の詳細な関係については今後さらに検討する必要があると考えられる。

4. 要約

黒毛和種牛の下垂体内黄体形成ホルモンサブニュートメッセンジャー RNA の発情周期における変化について検討した。黒毛和種牛の卵巣の形態から発情周期を推定し、以下の4つの周期に分類した：I期（黄体初期、発情周期の1〜4日：排卵日を0日とする）、II期（黄体開花期前半、5〜10日）、III期（黄体開花期後半、11〜17日）およびIV期（卵胞期、18〜20日）、下垂体内卵巣内の a および LHβ の mRNA 量はロットボトット法にて測定した。下垂体内卵巣の LH 含量はラジオイムノアッセイ法により測定した。下垂体内 a サブニュート mRNA 量はI期に最も高く、II期へと有意に減少し（P<0.05）、その後増加する傾向を示した。LHβ サブニュート mRNA 量は有意には変化しなかった。下垂体内 LH 含量はI期に低く、II期へと増加する傾向を示し、その後III期へと減少する傾向を示し、III期からIV期へと有意に増加した（P<0.05）。

以上の成績から、黒毛和種牛における下垂体内 a サブニュートの遺伝子発現は黄体初期に最も高く、一方 LH 含量は卵胞期に最も増加することが示唆された。黄体初期における a サブニュートの遺伝子発現の亢進は、LH サージもしくは LH のパルス状分泌により枯渇した下垂体内の LH 含量を補うことに重要である可能性が考えられる。

文献

Studies on the Relationship between Growth Hormone and Insulin-like Growth Factor-I Secretions and Reproductive Characteristic in Ruminants

—Characteristics of plasma growth hormone and insulin-like growth factor-I profiles during estrous and luteal phase—

Tsutomu Hashizume and Kenji Ohtsuki
(Faculty of Agriculture, Iwate University)

Plasma growth hormone (GH) and insulin-like growth factor-I (IGF-I) profiles during estrous and luteal phases in goats were examined to clarify the relationship between GH and IGF-I secretions and reproductive characteristic in ruminants. Frequent blood samples were drawn during the day of estrus and during the luteal phase on Day 10 after estrus from 4 goats, and concentrations of plasma GH and IGF-I were measured by an radioimmunoassay. GH was secreted in an irregular pulsatile manner in the estrous and luteal phases in each animal. There were no significant differences in the mean concentrations, pulse amplitude and pulse frequency of GH between the estrous and luteal phases. IGF-I was secreted in a steady manner and IGF-I concentrations during estrus were higher than those in the luteal phase for each of the four goats.

The present results show that secretory patterns in plasma GH during the estrous phase are similar to those during the luteal phase, but plasma IGF-I elevates during estrus in goats.

1. 目的

成長ホルモン（GH）は肝臓をはじめさまざまな組織からインスリン様成長因子-I（IGF-I）を分泌させる。GH と IGF-I 分泌は密接に関与し、互いにその分泌を調整する。IGF-I には細胞の分化や増殖作用があり、GH の成長促進作用は主として IGF-I を介して行われる。最近、GHやIGF-Iの受容体が、卵胞や黄体、卵管、子宮などにも存在することが諸外国で報告され始め、GHは従来知られていた家畜の成長や泌乳機構への関与のほか、繁殖生理機構にも関与している可能性が示唆され始めた。GH を投与したウシでは血中プロゲステロン濃度が増加し、黄体も巨大大化することが報告されている45。また GH はウシの黄体期における卵胞の発育ウェーブ形成に関係し
なり5-9，卵巣中の小型卵胞数の増加にも関与していることが報告されている5-9。またIGF-Iはin vitroにおいて黄体のプロフェステロン分泌を促進することも報告されている7-9。

このようにGHやIGF-Iは発情周期中に起こる諸現象と関与して分泌される可能性が示唆されるが，発情期や黄体期におけるGHとIGF-Iの分泌動態を調べた報告はない。そこで本研究では，

ヤギを用いて発情期と黄体期におけるGHおよびIGF-Iの分泌形態を明らかにし，GHとIGF-I分泌と反芻家畜の繁殖特性との関わりを明らかにしようとした。

2. 方法

2.1 供試動物

供試動物には当研究室飼養の成熟雌シバヤギ4頭（平均体重25kg）を用いた。ヤギは終日スタンションで飼育し，朝および夕方の2回，乾草と配合飼料を，十分量の水とともに給与した。なお，

ヤギは実験当日の朝には飼料を与えず，実験終了後にのみ飼餌した。

2.2 実験計画

実験前日までに各ヤギの顕静脈に採血用のカテーテルを取り付けた。採血は発情期と黄体期の2回行った。発情期および黄体期の採血は朝の5時30分から10時まで行った。黄体期の採血は発情終了10日目に行い，

全個体とも10:00から16:00までの6時間行った。採血は10分間隔で計37回行った。採取した血液は4℃下において2,500rpmで10分間遠心分離し，

血漿を分取した。血漿はホルモン測定当日まで-20℃で保存した。

2.3 ホルモン濃度の測定

血漿中のGH濃度を，二抗体法を用いたラジオイムノアッセイ（RIA）により測定した。標識ホルモンとして，USDA-bGH-B-1を用いた。第一抗体には，ウシGHをアルカリに免疫して得られた抗ウシGHアルカリ血清（元農水省畜試，上家哲博士 提供）を用い，第二抗体には，

抗アルカリプロリンヤギ血清（元群馬大学内分泌研究所，若林克己教授 提供）を用いた。アッセイの測定限界は1.0ng/mlで，アッセイ内およびアッセイ間の変動係数は，それぞれ9.6％および2.5％であった。

血漿中のIGF-I濃度は，二抗体法を用いたRIAにより測定した。標識ホルモンにはIGF-I（Amersham，code IM 172，UK）を用いた。

第一抗体には，ヒトIGF-Iをウサギに免疫して得られた抗ヒトIGF-Iウサギ血清（UB 2-495，NIDDK，USA）を用い，第二抗体には，

抗家児γプロリンヤギ血清（元群馬大学内分泌研究所，若林克己教授 提供）を用いた。標準曲線作成のための標準ホルモンには，ヒトIGF-I（Biomedical technologies INC，catalog No. BT-106，USA）を用いた。またアッセイに先立ち，血漿中の

IGF-Iを酢酸エタノール溶液で抽出した。アッセイの測定限界値は14.0ng/mlで，アッセイ内変動係数は7.8％であった。

2.4 統計処理

得られたデータはすべて平均値±標準誤差で示し，ANOVAで分散分析を行った後，Newman-Keulsを用いた各試験区間の有意差を検討した。またGHパルスの検定をEllisらの方法9を一部修正して行った。

3. 結果と考察

発情期および黄体期における4頭（#1，#2，#3および#4）の血漿中GH濃度の変化はFig.1に示すとおりであった。発情期における各個体のGH分泌形態には大きな差はみられなかった。

また，黄体期においては1頭（#4）が他の個体に比べGH放出能が高かったが，他の3個体におい
ではGH分泌形態に大きな差はみられなかった。発情期と黄体期における平均GH濃度はそれぞれ、5.3±1.0 ng/mlおよび6.0±2.4 ng/mlで有意差はみられなかった。同様に両期におけるGHパルスの振幅はそれぞれ、14.3±3.9 ng/mlおよび9.3±2.8 ng/mlで発情期が黄体期に比べ高い傾向にあったが有意差には至らなかった。また、GHパルスの頻度はそれぞれ、2.5±0.3/6hおよび3.3±1.0/6hで両期の値に有意差はみられなかった。GHは卵胞や黄体の発育に関与していることが示唆されている。すなわち、GHを投与したウシでは血中プロゲステロン濃度が増加し、黄体も巨大化することが報告されている1,2。また、ウシでは黄体期においても卵胞の発育、退行が一定の規則性に基づいて繰り返されるが、GHは卵胞の発育ウェーブ形成を早め3,4、卵巣中の小型卵胞数を増加させること5,6が報告されている。しかし本研究においては、黄体期も発情期もGH分泌形態には差がなくこれらの関係を明らかにするような結果は得られなかった。

発情期および黄体期における4頭の血漿中IGF-I濃度の変化はFig.2に示すとおりであった。血漿中IGF-I濃度は発情期、黄体期とも採血期間を通して一定の値を維持しGHにみられるようなパルス状の放出形態は観察されなかった。また、すべての個体において発情期の値は黄体期に比べ高い値を示した。ヤギで発情期中に血漿中IGF-I濃度が高くなることについてはまだ報告されておらず、この現象の生理的意義や由来については不明である。しかしIGF-Iの受容体は卵巣中の顆粒層、卵管上皮や子宮内膜上皮にあること、またIGF-Iはタンパク質同化、炭水化物代謝、細胞の増殖分化等に関与していることから、IGF-Iは卵巣の発育に関与したり、卵管と子宮からの分泌物の合成を促進して精子や胚の生存性を高めているかもしれない。またエストロジェンは子宮のIGF-I mRNAを増加させること、発情期にはIGF-Iが子宮腔内でも分泌すること等を考慮すると、発情期に血中で上昇するIGF-Iの由来は肝臓ばかりでなく子宮にも由来していること
が推察された。なお、発情期の血中 GH 濃度に変化がなかったのに IGF-I 濃度が上昇したのは、子宮での IGF-I の発現は GH に依存せず、エストロジェンに依存するとの報告と合致するかもしれない。

本研究の結果から、血中 GH 濃度の分泌形態は発情期と黄体期で差はないが、IGF-I 濃度は発情期に高くなることが明らかになった。今後、発情期に上昇する IGF-I の出現意義や由来についてさらに検討することが必要である。

4. 要 約

反芻家畜の発情週期中における GH、IGF-I の分泌形態を明らかにするため成熟雌シバヤギの発情期と黄体期に15分間隔で6時間採血を行い GH と IGF-I 濃度の変化を調べた。GH は不規則なパルス状分泌形態を示し、発情期と黄体期における平均 GH 濃度、GH パルスの振幅および頻度には両期の間で有意差は見られず、GH 分泌形態には差がなかった。一方、IGF-I 濃度は採血間を通して一定値を維持し、GH でみられたような採血期間中の変動は観察されなかった。また発情期における IGF-I 濃度は黄体期に比べ高い値を示した。

本研究の結果は、血中 GH 濃度の分泌形態は発情期と黄体期で差はないが、IGF-I 濃度は発情期に高くなることを示している。

本研究を実施するに当たり、牛 GH ラジオイムノアッセイにおける第一抗体と第二抗体 (HAC-MKA2-02GTP88) をご提供いただき元農林水産省畜産試験場上家哲博士および元群馬大学内分泌研究所若林克己教授に深謝いたします。また牛 GH 標準品 (USDAbGH-B-1) および IGF-I の第一抗体 (UB2-495) をご提供いただきました米国の USDA 動物ホルモンプログラムおよび NIDDK プログラムに感謝の意を表します。
文献
Studies on Detection of Chromosomal Aberration of Bovine Embryos Fertilized In Vitro Using Human-specific Painting Probe

小 林 仁・*梅 津 元 昭
（宮城県農業短期大学，*東北大学大学院農学研究科）

Jin Kobayashi and *Motoaki Umezu
(Miyagi Agricultural College and* Graduate School of Agricultural Science, Tohoku University)

To diagnose the chromosomal abnormality of bovine embryos, the present study was conducted to perform a detection of bovine specific chromosomes by Zoo-FISH using human and mouse chromosome specific libraries (CSLs). Biotin-labeled human 13, 17, 18, 21 and X, mouse X CSLs (Cambio) and human chromosome X α-satellite (Oncor) were used as probes for detection of the cattle specific chromosomes prepared from bovine lymphocytes. Every human probe could paint the specific chromosomes or detect specific sequences in human karyotype. Human 17 chromosome libraries hybridized to a couple of cattle specific chromosomes. However other probes could not confirm to hybridize to specific region on the bovine chromosomes. These results indicated that Zoo-FISH by using human and mouse CSLs is little adapted to identify the bovine chromosomes for a detection of chromosomal aberrations of bovine embryos.

1. 目 的

体外受精や顕微授精など人為的操作によって作出された胚では、染色体異常が起きやすいことが知られている。染色体異常を起こした胚は、早期に死滅したり流産したりする可能性が高いため、移植した胚の妊娠率を向上させるためにはこれらの胚をあらかじめ移植から除くことが望まれる。これまで染色体異常の検出には染色体分析法が用いられてきたが、近年蛻光 in situ ハイブリダイゼーション（FISH）法が開発された。FISH法では分裂中期の細胞だけでなく分裂間期の細胞でも染色体を検出できるため、細胞数の少ない受精卵の場合でもより詳細な遺伝情報を得ることが可能となった。FISH法は、細胞内のDNAに標識した特異的なDNA断片（プローブ）をハイブリダイゼーションさせ、プローブを蛻光検出する方法である。このためFISH法には、染色体特異的で細胞周期に関係なく恒常的に検出できるDNAプローブが必要である。ゲノム解析の進むヒトでは多数のプローブが開発され、FISH法による遺伝子診断が初期胚や胎児に応用されてい る。一方、ウシではプローブに適した染色体特異的な反復配列の開発は遅れており、FISH法で
染色体異常を検出した報告はわずかである3。
最近、フローサイトメトリーにより分離した染色体から作製した染色体特異的DNAライブラリーより染色体全体を染色するベインティングプローブがヒトで開発された。これらのプローブを異なる動物種間で用いる（Zoo-FISH）ことにより、ヒトゲノムDNAが他の動物種の染色体中ホモローグな部位があることが証明され、ウシとヒトの総括的比較染色体図の作製に有効なツールになっている45。もし、ヒトベインティングプローブでウシの染色体を安定して特異的に検出できれば、ウシ初期胚の染色体異常の診断に有効と考えられる。そこで、本研究ではZoo-FISHによるとウシ胚の染色体異常検出の可能性を検討するために、ヒトとマウスのベインティングプローブを用いてウシ染色体の検出を試みた。

2. 材料および方法
染色体標本の作製：10％ウシ胎子血清および1％フィットヘマグルチン-P（Difco）0.05mlを添加したRPMI1640（日水製薬）10mlにヒトおよびウシ末梢血0.5mlを加え、38.5℃、5％CO₂・95％空気の条件下で培養した。72時間後に0.1mg/mlコルセミド（和光純薬）を加え、1.5〜2.0時間培養した。浮遊液を1,200 rpm 5分間遠心分離し上澄みを除去した後、低張液（0.9％クエン酸ナトリウム液）を5ml加え15分間38.5℃で保温した。固定液（メタノール・酢酸＝3：1）2mlを加え1,200 rpm 15分間遠心分離し上澄みを除去した後、再び固定液10mlを加えて十分に攪拌した後、1,200 rpm 5分間遠心分離して洗浄を行った。洗浄を3回繰り返した細胞浮遊液をあらかじめ洗浄したスライドグラスに滴下して染色体標本を作製した。作製した染色体標本は、FISHに供するまで-20℃で保存した。蛻光in situハイプリダイゼーション：染色体特異的なペインタニングプローブは市販されているビオチン標識染色体ライブラリー（ヒト13, 17, 18, 21およびX染色体とマウスX染色体：Cambio）を用いた。ZOO-FISHは、Solinas-Toldoら3の方法を基に以下のとおり行った。あらかじめ標本を60℃で1.5時間保温した後、0.01Nの塩酸に溶解させた50μg/mlのペプシン溶液1mlを滴下してパラフィルムをのせ、38℃で15分間保温した。直ちに、2×SSC（1×SSC：0.15M NaCl, 15mMクエン酸ナトリウム）で洗浄した後、70, 90, 95および100％のエタノールシリーズに2分間ずつ浸して脱水を行った。脱水後は1％パラホルムアルデヒドに2分間浸し固定してから水中で5分間洗浄し、再度アルコールシリーズによる脱水を行い十分に乾燥させてからFISHに供した。プロープは、付属のハイプリダイゼーション液に混合し、65℃10分間保持して変性させた後37℃で30分間プレアーニリングを行った。次に、変性した標本にプロープを滴下し37℃72時間保持してハイプリダイゼーションをした後、73℃に保温した0.05〜4×SSCで5分間1回洗浄（高速洗浄）または45℃に保温した50％ホルムアミド−2×SSCで5分間3回洗浄した。ビオチン標識したハイプリッド分子は、ストレプトアビジン−FITCおよびアビジン−ビオチンで1回増幅して検出した8。標本の封入は、ヨウ化プロビジウム（0.3μg/ml）を添加または無添加の退色防止液（1.25％ジアザピシクロロクタン、90％グリセロール、10％リン酸緩衝液）を滴下して行った。
ヒトX染色体特異的α−サテライトプローブには、DXZ1（Oncor）を用いた。FISHはKobayashiら7の迅速法を基に以下のとおり行った。標識プローブ1μlを9μlのマスター混合液（50％ホルムアミド、10％硫酸デキストラン、2×SSC、500ng/μlサーモンDNA）に加え（プローブ混合液）、72℃にて5分間加熱し、直ちに急
Fig. 1 Detection of the homologous region on the chromosomes between human and bovine by FISH with human chromosome-specific library (CSL), human α-satellite and mouse CSL probes. The figures represent hybridization to Human (left) and cattle (right) metaphase chromosome with the following human CSLs: 13(A), 17(B), 18(C), 21(D), X(E), human chromosome α-satellite: X and Y(F) and mouse LSC: X(G). Arrowhead indicates painting site on the stated chromosomes of the respective species. These probes, except human 17 LSC, could not detect the homologous region on bovine chromosomes.
21とX染色体ベインティングプローブ。ヒトX染色体α-サテライトプローブおよびマウスX染色体ベインティングプローブを用いて、ヒトおよびウシ染色体を検出した結果をFig.1に示した。ヒトベインティングプローブをヒト染色体（XY）に用いた場合、13、17、18、および21染色体プローブでは1対の染色体が、X染色体プローブでは1つの染色体がベインティングされ、それぞれ13、17、18、21およびX染色体であると推定された。X染色体特異的α-サテライトプローブによるヒト染色体検出では、1つの染色体のセントロメア付近にシグナルが検出され、X染色体と推定された。一方、これらのヒト染色体特異的プローブでウシ染色体の検出（Zoo-FISH）を行ったところ、ヒト17染色体ベインティングプローブでは、1対の染色体がベインティングされたのに対し、その他のプローブでは染色体全体に非特異的な蛍光がみられ特異的な染色体は検出できなかった。また、ヒト17染色体ベインティングプローブを用いてZoo-FISHを行った間期の細胞では、核内に特異的なシグナルは観察されなかった。

分離捕集したヒト染色体から作製した染色体特異的ライブラリーDNAプローブによる染色体ベインティング法は、原生細胞の核型全体を比較するのに有効な方法である8)。また、ヒトベインティングプローブを他種動物の染色体の特定領域にハイブリダイシズさせる手法はZoo-FISHと呼ばれ、総括的比較染色体地図の作製に用いられている9)。ウシ染色体でも、Hayes9)によってヒト染色体と同一な部位が保存されていることが明らかになった。このうちヒト13、17、18、21およびX染色体は、相同な部位が1つのウシ染色体と対応しておりそれぞれ12、19、18、1およびX染色体上に存在する。このことから、本研究ではこれらのベインティングプローブを用いてウシ染色体検出の可能性について検討した。ヒト17染色体ベインティングプローブは、1対のウシ染色体をベインティングし、Hayesの報告6)から19染色体の可能性が高いと推察された。一方、13、18、21およびX染色体ベインティングプローブでは、特異的な染色体は検出されず、Hayesの報告6)と異なった。この原因は不明であるが、Zoo-FISHした標本では、全体的にバックグランドが高かったことから、検出方法やプローブの違いが影響していると考えられた。ベインティングプローブは、分取した染色体DNAを非特異的に増殖して作製するために、同じ染色体のプローブでも特異性に差があると考えられ、ベインティングプローブの比較が必要と思われる。しかし、ウシ染色体上に特異的な部位が検出されたヒト17染色体ベインティングプローブでも、間期の細胞では明瞭なシグナルを検出できなかったことから、Zoo-FISH法を応用した分裂間期の細胞におけるウシ染色体の検出は困難であり、Zoo-FISH法によるウシ胚での染色体異常検出の可能性は低いと考えられた。

4. 要約

ヒトとマウスのベインティングプローブおよびヒトα-サテライトプローブを用いてZoo-FISH法によるウシ特異的染色体の検出を試みた。プローブには、ヒト染色体特異的ライブラリーから、ウシ核型中に相同性のある部位を1つの染色体上に持つ13、17、18、21およびX染色体、ヒトX染色体α-サテライトおよびマウスX染色体特異的プローブを用いた。ヒト染色体染色体特異的プローブでヒト染色体を検出した場合、明瞭に特異的な染色体がそれぞれのプローブに対応して検出された。ヒト17染色体ベインティングプローブを用いてウシ染色体でZoo-FISHを行った場合、1対の相同性の高い染色体が検出された。一方、ヒト17染色体ベインティングプローブ以外のプローブでは、特異的なウシ染色体は検出できなかった。
ヒトペインティングプローブを用いたウシ体外受精胚の染色体異常検出に関する研究

文 献
Most serious problem in reproductive defects of stud bulls is the abruptly occurring decrease of sperm in semen and subsequent azoospermia. To overcome this affection, physical therapy by administration of several gonadotrophins have been performed, however, these animals have leaded to bad prognosis in most cases. In this study, to develop the drastic method for curing spermatogenic defect animals, mRNAs and proteins induced according to initiation of spermatogenesis in the severe spermatogenic defect model of experimental animals was isolated.

In this study, vitamin A deficient mice (the control) were prepared and all-trans retinoic acid was administered in these mice (the experimental group). Subtractive DNA hybridization showed that one of the induced mRNAs in the experimental group corresponded to cdk 2 kinase mRNA. Up-regulation of cdk 2 mRNA by all-trans retinoic acid in VAD was confirmed using GeneAmp 5700 sequence detection system (PE Biosystems) based on the fluorescent quantitative PCR method. The level of cdk 2 mRNA of the experimental group was 8-fold higher than the control. cdk 2 was highly expressed in all spermatocytes. Notably, in cells undergoing the meiotic reduction divisions, cdk 2 appeared to be localized specifically in chromatin. Furthermore, most progressed spermatogenic cells in VAD mice are preleptotene spermatocytes. Although clearly several other factors are also involved in the initiation of meiosis, cdk 2 mRNA is an early responsive gene and might affect early changes of chromosomes in preleptotene spermatocytes.

Proteome analysis showed that 4 spots were differentially expressed between the same groups described above by the 2 dimensional polyacrylamide electrophorosis. Ordinarily, isolated spots are subjected to an in-gel digestion process using several proteases, and then analyzed by amino acid sequencing or mass spectrometry. The author is presently using MALDI-TOF-MS method to identify these 4 spots.

1. 目的

種雄牛の繁殖障害のうち最も深刻なのは、突然に起こる精液中の精子数の減少と続いて起こる無精子症である。精子数の減少を食い止めるためには、様々なホルモン治療が施されるが、現状維持がせらいぜで改善の見込みはほとんどない。これは、精巣内での精子発生不全に起因しており、特に問題の是減数分裂過程で起こる生殖細胞の退行である。この減数分裂過程の機構が皆目不明なため根本的な治療ができないという現状にある。

近年、良好な肉質を持つ牛の形質をそのまま保存するために、また食糧危機を打破する目的で、クローン牛が盛んに作製されている。最近では、市場に出回るほどにクローン牛の作製技術が確立されてきた。従って、次第にクローン牛作製の本来の目的に到達しつつある。しかし一方で、クローン技術ではそれ以上良好な形質を持つ牛を作出
ラット精巢における新規転写調節因子の機能解析

することができない。クローニング技術が原理的に、真核生物にとって環境への適応、延長化を引き起こす増数分裂という過程を経ないからである。本研究には、前述のように種類が直面している緊急の事態を打破する目的と、クローニングの将来を見据えて基礎データを残しておくという二つの目的がある。

実際には、ビタミンA欠乏モデル（VAD）マウスを用いて減数分裂誘導因子の同定を目的し、前年度までの伊藤記念財団助成金により単離した新規転写調節因子との機能の関連性について検討を試みた。

2. 材料と方法

研究の概略として、VADマウスを作製しレチノイン酸（10mg/kg mouse）を投与したマウスを実験群とし、溶媒のみ投与したマウスを対照群とした。これら実験群と対照群の精巢を用いて、subtractive DNA hybridizationおよびタンパク質の2次元泳動によるプロテオーム解析により、ビタミンA投与により誘導されるもしくは抑制される遺伝子およびタンパク質の同定を行った。

VADマウス作製のため、10週齢雌マウスおよび雄マウス（ともにC57BL/6J）を購入した。交配に先立って、雌マウスをビタミンA欠乏食投与により3週間飼育した。交配後、分娩までの期間、さらに産子が成熟に達するまでの期間ビタミンA欠乏食を投与した。この時点でマウスの一部より精巢を採取し、凍結切片を作製し、精子発生が完全に停止していることを確認した。この時点で、さらに予防的に10週齢に達するまでビタミンA欠乏食で飼育した。上記投与量でレチノイン酸を腹腔内投与し、6時間後に精巢を採取した。採取したサンプルは、分子生物学的解析およびプロテオーム解析に供するために一部凍結保存し、一部は形態観察のため、プア液にて固定を行った。

固定したサンプルは、エタノール脱水列で順次税水を行い、キシリレンで透徹後、パラフィンに包埋した。4μm厚の切片を作製し、ヘマトキシリン・エオジン染色を施し、光学顕微鏡にて観察を行った。

凍結保存したサンプルを融解し、Isogen（和光純薬、大阪）よりtotal RNAを抽出し、oligotex dT super（宝酒造、東京）を用いてmRNAを精製した。精製したmRNAは、subtractive DNA hybridizationに供した（PCR-select cDNA subtraction kit, Clontech Japan）。行は、すべてマニュアルに従って行った。また、実験群および対照群の凍結したサンプルより、タンパク質の2次元電気泳動を行った。プロテアーゼ阻害剤含有（5μg/ml leupeptin, 200μM PABSF, 1μM peptatin, and 1mM EDTA）サンプルバッファー（8M urea, 2% TritonX-100, 1% DTT, 0.5% ampholine（3〜10）中で、溶解し、sonicatorの最大出力で1分間組織の破砕を行った。その後遠心分離により組織残渣を取り除いた。抽出した溶液を、IPGphor（Amersham Pharmacia Biotech, UK）により、等電点電気泳動を行った。二次元目のSDS-PAGEのために、等電点電気泳動後のゲルを、平衡化バッファー（50mM Tris-HCl pH 8.8, 6M urea, 30% glycerol, 2% SDS, BPB）にて置換した。SDS-PAGEの後、クマシープレプ倫・染色を施し、実験群と対照群との間で変化するスポットの検出を行った。

3. 結果および考察

光学顕微鏡によるVADウス（対照群）およびレチノイン酸投与群の精巢の形態観察の結果、両者の間に形態学的な差異は認められなかった。上記のようにして作製したVADマウスの精巣には、A型精緻細胞、およびプレレプトメント期の精母細胞のみが存在し、レプトメント期以降の精母細胞
胞および精子細胞はすべて退行するとの報告がなされている。本研究でも同様の結果が得られた。
ビタミンA欠乏動物の精巣における退行性変化は可逆的であるため、その後のビタミンA投与により精子発生を再開することが知られている。すなわち、今回光学顕微鏡で形態を観察した結果、残っている細胞が、減数分裂に入る前の段階であるA型精細胞、減数分裂に入った直後のプレレトリプレトン期精母細胞であったことから、本研究で行ったsubtractiv DNA hybridizationによって単離される誘導、抑制遺伝子、タンパク質の二次元電気泳動で検出される誘導されるスポットおよび抑制されるスポットは、減数分裂の誘導に伴って変動する因子である可能性が高い。

Subtractive DNA hybridizationの結果、誘導されたcDNAの一つのクローンとして単離した。塩基配列の検討の結果、このクローンはcyclin dependent kinase 2 (cdk 2) cDNAであった。蛻光色素を利用した定量的PCR (Gene Amp 5700 sequence detection system, Applied Biosystem, USA) の結果、cdk2 mRNA は、レチノイン酸投与6時間で8倍に誘導されることが明らかとなった。cdk2 タンパク質の量は、精子発生の退行性変化が著しい限り構成的に変化していると考えられている。今回は、これを確認するために精子発生に緩やかな退行性変化を起こすVADマウスを用い、10週令雄マウスにビタミンA欠乏食を4週間投与し（対照群）、レチノイン酸投与（10mg/kg mouse）6時間後に採材した。これら実験群と対照群との間に形態学的な変化は認められなかった。両者において、精細管腔内に精子は観察されたものの、正常では確認されない精子細胞が融合してできたと思われる退行性変化を起こした細胞がしばしば観察された。上記と同様、定量的PCR によりcdk2 mRNAの発現量を検討した。結果、両者の間に発現量の差異は確認されなかった。cdk2 は、すべての精細胞の核内クロマチンに局在している。減数分裂の開始に関与する因子は他に存在する可能性はあるが、本研究の結果、cdk2 mRNAはearly responsive geneであり、減数分裂の開始に伴ってプレレトリプレトン期における初期の染色体変化に関与する可能性が示唆された。二次元電気泳動の結果、レチノイン酸投与により誘導、もしくは抑制される4つのタンパク質スポットを確認した（Fig. 1）。現在、in gel digestionによるゲル内タンパク質の消化を行い、飛行時間型質量分析計（MALDI-TOF-MS）によるこれらタンパク質の同定を行っている。本年度研究では、前年度までに得られた新規転写調節因子が、VADマウスモデルにおけるレチノイン酸投与群で誘導されているかどうかの検討を行うまで至らなかったが、明らかに減数分裂の開始に伴って誘導される遺伝子の単離に成功した。次年度以降、タンパク質の
4. 要 約

種雄牛の繁殖障害のうち最も深刻なのは、突然に起こる精液中の精子数の減少と続いて起こる無精子症である。精子数の減少を食い止めるためには、様々なホルモン治療が施されるが、現状維持がせいぜいで改善の見込みはほとんどない。これに対する抜本的な治療を施すための基礎研究として、実験動物におけるシビアな精子発生不全モデル（ビタミンA欠乏 (VAD) 動物）を用いて、精子発生の再開に伴って誘導される遺伝子およびタンパク質の単離を試みた。

VAD マウスにレチノイン酸を投与した結果、実験群で誘導される遺伝子のひとつは cdk2 mRNA であった。cdk2 は、すべての精巣細胞の核内クロマチンに局在している。本研究で、VAD マウスの精巣に確認された精巣細胞の中で最も発生の進んだ細胞はプレレプトデン期の精巣細胞であった。これらのことから、減数分裂の開始に関与する因子は他に存在する可能性があるが、cdk2 mRNA は early responsive gene であり、減数分裂の開始に伴ってプレレプトデン期における初期の染色体変化に関与する可能性が示唆された。同実験群とプロテオーム解析を試みた結果、タンパク質の二次元電気泳動で、実験群と対照群の間で 4 つの変動するスポットを同定した。現在、飛行時空間質量分析法を用いてこれらタンパク質の同定を行っている。
Effect of Carnitine on the Reproductivity of the Male Mouse

Yu-ichi Fukui, Tadashi Mori, *Naoki Itoh and **Keita Suzuki
(Graduate School of Agriculture, Hokkaido University, *Sapporo Medical University and **Field Science Center, Hokkaido University)

L-carnitine is an amino acid essential for intracellular fatty acid oxidation and its acetylated form, acetyl carnitine is utilized as energy substrate in the cell. Carnitine exists in the epidydimal fluid abundantly and maturing spermatozoa take it in and convert into acetyl carnitine. As spermatozoa become motile and obtain the ability to fertilize during passage through epididymis, it has been thought that carnitine has a role in the maturation of spermatozoa.

The effects of carnitine added to the medium on the motility, fertilizability and energy metabolism of the mouse epidydimal spermatozoa were investigated in this study.

The epidydimal spermatozoa were suspended to the medium HTF without energy substrates (HTF(-)) and incubated for 60 min in HTF(-) (control) or HTF(-) with 20 mM carnitine, 20 mM carnitine plus 10 mM sodium-acetate, or 20 mM acetyl carnitine. These spermatozoa were subjected to in vitro fertilization (IVF) and motility test. Spermatozoa incubated in the medium with carnitine penetrated oocytes at significantly higher rate than control. Moreover, penetration rates of spermatozoa incubated in the medium with carnitine plus sodium-acetate or acetyl carnitine were higher than that of spermatozoa incubated with carnitine only. In motility test, more spermatozoa reached a distal segment when they were incubated with acetyl carnitine, carnitine or carnitine plus sodium-acetate. To confirm the energy metabolism in the spermatozoa incubated with carnitine, intracellular NADH content was measured by using Cell Count Kit. Intracellular NADH amounts were more abundant in spermatozoa incubated with carnitine plus sodium-acetate.

These results showed that spermatozoa took in carnitine and sodium-acetate and converted them into acetyl carnitine and stored acetyl carnitine is utilized as energy substrate and contributed to the sustenance of motility and fertilizability.

1. 目的

哺乳類の精子は、精巣の精細管中における一連の精子形成（spermatogenesis）によって産生された後、精巣上体を通過する間に運動能力や受精能力を有するようになる。この過程は精子成熟（epididymal maturation）と呼ばれ、これは精巣上体液に含まれる様々な有機物や酵素が、精巣上体を通過または停留中の精子に取り込まれ、精子の細胞膜構造を変化させることによって起こるものと考えられる。1,2）

精巣上体に比較的多量に存在する有機物の一つ
つに、アミノ酸の一種である L-カルニチンが挙げられる。カルニチンは、長鎖脂肪酸の酸化に不可欠な物質であり、食肉・乳製品・魚介類に多く含まれている。精子におけるカルニチン代謝の研究から、精子は取り込んだカルニチンにアセチル基を付加してアセチルカルニチンとして貯蔵することで、エネルギー生産を効率良く機能させると考えられている。

そこで本研究では、カルニチンおよびアセチルカルニチン、あるいはカルニチンとアセチル基供与体としての酢酸ナトリウムを添加した培養液で前培養したマウス精子を、体外受精および精子泳走実験に用いて、受精率および精子の運動持続性に及ぼすカルニチンの効果の有無を判定した。また処理精子の NADH 量を測定することで、精子のエネルギー生産に及ぼすカルニチンの効果について判定した。

2. 方法

2.1 試供マウス

当研究室にて飼育されている、ICR 系（Jcl：ICR）の 1 から 6 カ月齢の健康なマウスを用いた。これらのマウスは、照明時間 14 時間、気温 25℃、湿度 60～70％、餌と水は不断給餌の条件下で飼育した。

2.2 培養液および培養方法

体外受精時の媒精用培養液には BSA（Bovine Serum Albumin, Fraction V：Sigma）を 0.5 ％添加した HTF 溶液を用いた（以下 HTF）。

精子の前培養用培養液には HTF からビルピン酸ナトリウム、乳酸ナトリウム、グルコースのエネルギー基質を除いたもの（以下 HTF（−））を用いた。

卵子の回収・洗浄用、および精子泳走実験用の培養液には、20mM HEPES 緩衝培養液（大気中で pH 7.4）である修正 HTF 培養液（以下 mHTF）を用いた。

媒精後の胚発生用培養液には CZB 溶液を用いた（以下 CZB）。

2.3 精子の処理

雄マウスを頭部脱白法で受け、精巢上体精子を HTF（−）に導入して精子一次希釈液を作成した。精子の前培養には HTF（−）を基本培養液とし、これに 20mM カルニチン（東京化成）、10 mM 酢酸ナトリウム、20mM カルニチンと10 mM 酢酸ナトリウム、および 20mM アセチル-L-カルニチン（Sigma）を添加した 5 つの培養液を用いた。

2.4 実験内容

（1）体外受精実験 各実験区の前培養用ドロップ 90μl に、精子 1 倍希釈液 10μl をそれぞれ注入し、1 時間の前培養を行った。卵子は、雄マウスの過排卵処理後 14 から 15 時間に卵管膨大部より採取し、プラスチックシャーレ内の HTF ドロップ（180μl）へ移した。卵子塊の入ったドロップ中に、前培養した精子浮遊液 20μl を導入（精子濃度は 2×10⁶～5×10⁵/ml）し、その後 3 時間培養器内で共培養した。卵子と精子の共培養後、卵子を CZB で洗浄してから共培養液でさらに 3 時間培養を行った。培養を終えた卵子は固定・染色後、顕微鏡観察により雄性前核の有無により受精の有無を判定した。

（2）精子泳走実験 精子泳走実験は Hossainらの方法を改良して用いた。ペトリ皿（Falcon 1007：Bacton Dickinson Labware）上に、mHTF 培養液 40μl を用いて 6 つのセグメント（1 本 3.5cm）からなる全長 21cm のラインをひいた（Fig.1）。乾燥を防ぐためシーレオイルで覆い、前培養した精子浮遊液（濃度 1×10⁵/ml、1 時間前培養）10μl をラインの始点に加え、37℃に保温静置した。ほとんどの精子が活力を失う 24 時間後に各セグメントの 3 点での精子数を測
定し、その平均をセグメントの精子数とした。

（3） 精子 NADH 量の測定 Cell Count Kit-8（WST-8：同仁化学、以下 WST）を用いて、精子が代謝によって生産した NADH 量を比色測定し、精子のエネルギー生産量の目安とした。

各培養液で調整した精子浮遊液（精子濃度２×10⁶ 100μl を96穴細胞培養用プレート（Falcon 3072：Bacton Dickinson Labware）に入れて、培養容器で4時間の前培養を行った。その後、WST10μl を各ウェルに加えてよく混和し、培養容器内で90分の呈色反応を行った。反応終了後、プレートミキサーで再度混和させた後、プレートリーダー用いて吸光度を測定した。

2.5 統計処理

得られた結果は、統計解析用ソフトウェア STATVIEW を用いて、分散分析を行った。また、各実験区間の平均値の比較には、Fisher の PLSD test を行った。結果の値は平均値±SEM で示した。有意水準は5%を設け、それ以下のは有意であると見なした。

3. 結果および考察

カルニチンの細胞内代謝における機能は、長鎖脂肪酸と CoA が酵素したアシル CoA がアシルカルニチンとなる際の基質となり、ミトコンドリア内膜への輸送を促すことである。アシルカルニチンはミトコンドリア内でアセチル CoA となり TCA サイクルに入れて ATP 生産に利用される。さらにカルニチンは、ミトコンドリア内のアセチル CoA および CoA 濃度の恒常性維持や細胞内エネルギー蓄積にも関与している。このような機能は、精子、心臓、昆虫の飛筋および脳で発現されている。このことから、カルニチンは男性不妊の精子無力症に対する栄養治療法の1つとして注目されており、実際にヒトの男性不妊治療としてカルニチンを利用した報告もなされている。

精子前培養液への、カルニチン、酢酸ナトリウム、およびアセチルカルニチンの添加が受精率との及ぼす効果を体外受精によって調べた結果、すべての添加区において、無添加区に比べて有意な受精率の改善が見られた（Fig.2）。また、酢酸ナトリウム、カルニチン+酢酸ナトリウムおよびアセチルカルニチン添加区はいずれも約90％とカルニチン添加区に比べて有意に高い受精率を示した（p<0.01）。

体外受精では、精子が卵子に到達し、透明帯を貫通して卵子細胞膜に接着するまで数時間を要し、その間精子は運動性を持続していなければならな
い。その激しい運動を発現させるために大量のエネルギーを消費すると考えられ、そのためには
内因性および外因性のエネルギー基質の存在が重要であろうと考えられる。17-18 本研究の体外受精実験の無添加区（対照区）では、前培養メディアムにはグルコースをはじめエネルギー源を添加していないためエネルギー貯蔵量が少ない精子では運動の持続が不十分であり、その結果受精率が低値にとどまったと考えられる。一方、カルニチン添加区では無添加区よりも受精率が有意に高めることから、カルニチンの存在によってエネルギー利用効率が高まったと考えられる。

精子の運動性に及ぼすカルニチン、酢酸ナトリウム、およびアセチルカルニチンの効果を的確に判断するため精子泳動実験を行った。その結果をFig.3に示した。始点から10.5から14cm離れたセグメント4では無添加区と比較してアセチルカルニチン添加区で到達精子数が著しく多くなった。また、カルニチン添加区では有意差はないものの精子数の増加がみられた。カルニチン＋酢酸添加区は、カルニチンあるいは酢酸ナトリウムの単独添加区に比べて到達精子数が増加する傾向がみられた。

酵酸は細胞内でミトコンドリア外膜に存在するアシルCoAシナーゼによってアセチルCoAとなることが知られている。カルニチン＋酢酸ナトリウム添加区ではカルニチンとアセチルCoAはアセチルカルニチンと遊離CoAに変換されることで、アセチルカルニチンの精子細胞内蓄積量が増し、その結果、運動持続性が向上したと考えられる。

この仮説を確認するために、精子のエネルギー代謝を評価するNADH測定実験を行った。無添加区の吸光度を1とし、ある添加区の値は、カルニチン添加区で1.084±0.019、カルニチン＋酢酸ナトリウム添加区で1.093±0.024、と有意な増加が認められた。一方、アセチルカルニチン添加区では1.004±0.029と無添加区との差は認められなかった（Fig.4）。

NADHはミトコンドリア内膜で電子伝達系に入り、電子伝達に伴う酸化的リン酸化により多量のATPが産生される。実験の結果、カルニチン添加区およびカルニチン＋酢酸ナトリウム添加
Fig. 4 Relative intracellular NADH contents in spermatozoa. Spermatozoa were preincubated in HTF(-) (control; -), HTF(-) with 10 mM sodium-acetate (A), 20 mM carnitine (C), 20 mM carnitine plus 10 mM sodium-acetate (C+A), or 20 mM acetylcarnitine (AC) for 4 h prior to measurement of NADH amount by using Cell Count Kit. Absorption values were standardized by control value. Data were obtained from 3 replications.

*: Significantly different (P<0.05) from control (-)

区において、無添加区と比較して有意に高かったことから、カルニチン添加により ATP 生産量が高まったことが示唆された。本実験では外因性エネルギー基質のない培養液を用いたにも関わらずカルニチン添加区では、外因性エネルギー基質が存在する区（カルニチン+酢酸ナトリウム添加区）と同等のレベルで ATP 生産量が高く維持されていることから、前述の仮説どおりカルニチンは精子のエネルギー利用効率を高める役割を担っていると考えられる。

以上の結果より、培養液に添加したカルニチンは精子のエネルギー利用効率を高めることで ATP 生産を高く維持し、精子の運動性持続性を向上させ、受精率を向上させたと考えられた。

4. 要約

アミノ酸 L-カルニチンは、細胞内の脂肪酸酸化には不可欠な物質であり、さらにこれがアセチル化されたアセチルカルニチンは、細胞内でエネルギー源として利用される。カルニチンは精巣上体に高濃度に存在し、カルニチンの取り込みと精子内でのアセチル化と並行して運動能や受精能が獲得されることから、カルニチンおよびアセチルカルニチンが精子の運動能維持や受精能獲得に関わっていると考えられる。

そこで本研究ではマウスを用いた実験により、カルニチンが精子の運動能および受精能に及ぼす効果について調べた。

精子受精能および運動持続性に及ぼすカルニチンの効果を判定するため、エネルギー源を除きカルニチン、カルニチンと酢酸ナトリウム、あるいはアセチルカルニチンを添加した培養液でマウス精巣上体尾部精子を培養し、体外受精、精子泳走実験および精子 NADH 測定実験を行った。その結果、カルニチン添加区において、体外受精率は無添加区に比べて有意に向上し、さらにカルニチン+酢酸ナトリウム添加区およびアセチルカルニチン添加区では、カルニチンのみ添加した区に比べて体外受精率は有意に上昇した。精子泳走実験では対照区に比較してアセチルカルニチン添加区で遠位到達精子数は有意に高くなり、カルニチン+酢酸ナトリウム添加区およびカルニチン添加区において有意ではないものの運動持続性の向上もみられた。精子 NADH は、対照区に比較してカルニチン+酢酸ナトリウム添加区およびカルニチン添加区で有意に高い値であった。

これらの結果から、精子内に取り込まれたカルニチンと酢酸から合成されたアセチル CoA が、エネルギー貯蔵物質であるアセチルカルニチンに変換され、精子はそれを利用することで高い運動性を維持することが可能となり、受精能も上昇したと考えられた。
文献
流産を誘発する子宮内サイトカインの変動

Changes of Cytokines in Abortion at the Feto-maternal Interface

ヤシハル・ナマンバ・ヤスオ・キゾ
（山口大学農学部）

Relationships between female reproductive performance and uterine natural killer (uNK) cells were investigated in pregnant IL-2 receptor β-chain overexpressed transgenic (Tg2Rβ) mice. At 8 days of pregnancy, all fetuses were alive, suggesting that implantation normally occurred in these mice. However, 47% of fetuses were dead at 10 days of pregnancy and at 12 days all fetuses were resorbing, indicating that fetal loss progressed with the advance of pregnancy. The placenta of Tg2Rβ mice gradually decreased in weight with the advance of pregnancy. At 10 days the placental labyrinth, decidua basalis, and metrial gland in Tg2Rβ mice were poorly developed, and more uNK cells were found in Tg2Rβ mice than in the control mice. We propose that Tg2Rβ mice are the first and interesting model that uNK cells can cause abortion, to clarify the involvement of uNK cell function in female reproductive performance.

1. 目 的

マウスの着床・胎盤形成過程において、子宮NK（uNK）細胞が有意に増加する。uNK細胞は着床前には子宮内膜に散在し、着床後には間膜線・基底脱落膜に局在する1-9。uNK細胞は妊娠12日まで増加し、その後、細胞の退行性変化により徐々に減少して、分娩前にはみられなくなる。uNK細胞の細胞質内にはPAS染色陽性の巨細胞を持ち、この細胞は細胞溶解性タンパク質であるPerforinやserine esteraseを含んでいる5,6。しかし、これらの細胞溶解性タンパクによる子宮内での他の細胞への細胞傷害性は確認されていない。in vitroでNK細胞はIL-2の刺激により腫瘍細胞（P815）に対してキラー活性を示すリンホカイン活性化キラー細胞（LAK cell）に分化する。LAK細胞は、培養栄養膜細胞に対して細胞傷害性を示す唯一の細胞である7。しかしuNK細胞は胎盤でLAK細胞へ分化せず、uNK細胞は着床部に限局していて細胞傷害性を示さない。

uNK細胞の機能は不明な点が多い21,22）が、NK細胞欠損マウスであるTgE26（T cell−/B cell+/NK cell−）では胎盤の形成不全、血管の構築の異常と原因する流産を引き起こす8,9。TgE26にscid/scid（T cell−/B cell−/NK cell+）の骨髄を移植すると、uNK細胞の回復がみられ、子宮内の血管構築の異常が回避され、間膜腺の分化の誘発、脱落腺の異常性の低下、胎盤重量の増加、さらに妊娠中期（妊娠10日、12日、14日）に
おける胎子の生存率の回復がみられる。このことより、uNK細胞は骨髄由来であり、血管新生・構築に関連し、胎盤形成や胎子発育に重要な役割を持つとされている。実際にuNK細胞は、顆粒にCSF-1、IL-1、LIF、EGF、TNF-αおよびiNOS（inducable NO synthetase）などのサイトカインや酵素が含まれることが知られており。特にiNOSはインタウバク球内でのNOの合成促進と、平滑筋に作用し、平滑筋を弛緩することにより胎盤への血液供給を有効なものにし、胎子の成長を促進するものと推測される。

本研究では、NK細胞の増殖分化因子であるIL-2のレセプターの内、β鎖を過剰発現する遺伝子変換マウス（Tg2Rβ）の妊娠子宮を観察したところ、Tg2Rβにおいて流産が誘発され、かつ異常なuNK細胞が見られたので、これらの相関関係を明らかにすることを目的とした。

2. 材料および方法

2.1 動物

本実験に用いたTg2Rβは宮坂（大阪大・医学部）らによって作製され、実験動物中央研究所で維持されていたものである。Tg2Rβを得るためTg2Rβ♀×C57BL/6J（B6）♂の交配を行い、これにより得られた各マウスをPCR法により確認した。PCR法により確認される際のマウスは生後2か月のものを使用した。

2.2 PCR法によるIL-2Rβ過剰発現の遺伝子変換の確認

DNA templateを腎臓、肝臓、心臓、脾臓、胸腺、肺より抽出した。IL-2Rβ過剰発現の遺伝子変換をPCR法により確認するためにsense primer 5'-AATgTCTCgTgCaAgTggAg-3' とantisense primer 5'-AgAcgCgAgAAgAgC-CA-3'（Takara Biotechnology Co., LTD）を使用した。サンプルはそれぞれdenature（98°C, 30sec）、anneal（55°C, 10sec）、extend（72°C, 20sec）により1cycleとし、これを50cycle行った。その後、電気泳動を行い661bpにバンドの見られたものをTg2Rβと確認して用いた。確認されなかった同腹のものをNormal Littermate（NL）とし、B6とともに対照として使用した。

2.3 胎盤および胎子の重量の測定

Tg2Rβ♀×Tg2Rβ♀, NL♀×NL♀, B6♀×B6♀のそれぞれの妊娠8日（Tg2Rβ：4例, NL：3例, B6：2例）、10日（Tg2Rβ：4例, NL：3例, B6：3例）および12日（Tg2Rβ：4例, NL：3例, B6：3例）における胎子の生存率および胎盤重量を測定した。

2.4 形態学的解析

1）光学顕微鏡観察：採取した妊娠10および12日の胎盤をBouin液で固定し、定法に従ってパラフィン包埋した。その後、胎盤を横断する厚さ5mmの切片を作製し定法に従って脱酵素素酸シップ（PAS）染色を行った。

2）透過電子顕微鏡観察：2.0%パラホルムアデヒド-2.5%グルタルアルデヒド（0.01M PBS, pH 7.4）で前固定した後、1%四酸化オスミウム（0.01M PBS, pH 7.4）で後固定した。エタノール上昇系列で脱水し、QY-1で置換後、エボン812に包埋した。包埋したエボン樹脂ブロックはウルトラミクロトーム（8800 Ultratome, LKB社）を用いて超薄切片を作製し、酵素クエン酸鉱による電顕二重染色を施し、透過電子顕微鏡（Hitachi H-700）で加速電圧75kvにて観察した。

2.5 in situでのアポトーシス検出

光顯用の切片を作製し、Genzyme TACS in situ Apoptosis Detection Kit（Genzyme Diagnostics）を用いてTUNEL（terminal deoxynucleotidyl transferase (TdT) mediated dUTP-biotin nick end-labeling）法を行った。まず脱パ
ラを行い、PBS（0.01M、pH 7.4、DNase free）に10分間放置しました。Proteinase K に15分、2％H₂O₂ に5分、Labeling Buffer に1分間室温でそれぞれの溶液に浸しました。その後、TdT dNTP (1.0mM), Co₂⁺ (50mM), TdT (1.0mM), Labeling Buffer (50mM) の混合液を37℃、30分間反応させました。Stop Buffer に5分、PBS （0.01M、pH 7.4、DNase free）に2分浸した後、PBS （50mM）、Strep-HRP （1.0mM）の混合液に室温で15分反応させました。PBS に2分×2浸し、DAB （250mM）、PBS （50mM）、30％H₂O₂ （50mM）混合液で10分間室温で反応させ、蒸留水で洗い流しました。その後、メチルグリーンで3分間酸染色を行い封入しました。

2.6 iNOS 染色

iNOS 染色には、rabbit anti-mouse iNOS のM-19（carboxyl terminus amino acids 1126-1144、cat.# sc-650；Santa Cruz Biotech, Santa Cruz, CA）と Vectastain Universal Quick KIT (Vector Laboratories, Inc. CA) を用いた。

光顕用の切片を作製し、脱バラを行い、PBS（0.01M、pH 7.4）に10分間放置しました。Proteinase K に15分、2％H₂O₂ に5分、PBSに10分間室温でそれぞれの溶液に浸した。Blocking serum により blocking を行った後、M-19（5 mg/ml）で4℃、overnight で反応させました。PBSで洗浄し、biotin-結合抗ラット IgG と反応させABC法にて染色した。対比染色はヘマトキシリン染色を行い、封入した。

3. 結果と考察

Tg2Rβの着床は妊娠8日で、その数もその時期も対照群（NL、B6）と同様であったが、妊娠10日に57％の胎子が死亡し、12日ではすべての胎子が死亡あるいは異常であった。対照群では妊娠10、12日においても正常に発育していた。これは、Tg2Rβにおいて着床は正常に起きていたが、胎盤形成期に何らかの原因により流産が起きたことを示している。Tg2Rβの妊娠10日の胎盤重量は、B6 と比べて0.81（B6=1）、12日では0.62で胎盤の重量は対照と比べて小さく、妊娠の進行に伴い減少した。妊娠10日における Tg2Rβの胎盤は対照群に比べて胎盤重量、迷路部・脱落膜・間葉領域の減少等の胎盤形成不全がみられ、TgE26の異常と非常に似ている。TgE26はuNK細胞欠損による血管の未発達によるものであった8～10)。しかし、Tg2Rβ妊娠10日のuNK細胞自身の数とサイズ、顆粒の数とサイズが、対照と比べて大きいものの、uNK細胞は存在しており、TgE26のようなuNK細胞欠損を原因とした血管の未発達はみられなかった。また、Tg2RβのuNK細胞にはiNOSが発現しており、TgE26ではuNK細胞によるiNOSの発現がみられないので、TgE26とTg2Rβの流産は明らかに異なる。

Tg2Rβでは栄養膜巨細胞が不連続で、その部位からuNK細胞が迷路部内に侵入していた。TUNEL法によりこの部位の栄養膜巨細胞は退行性の変化を示していた。TUNEL法ではアポトーシスだけでなくネクローシスによる退行性変化も検出するので、この退行性変化はアポトーシスまたはネクローシスによるものかは分からないが、栄養膜巨細胞の退行性変化は、対照群ではまったくみられない。また、Tg2Rβの基底脱落膜においても脱落膜細胞が退行性変化を示すが、対照群ではまったくみられない像である。このような栄養膜巨細胞を過剰に増殖するuNK細胞が侵入しているTg2Rβの像は、自然流産のモデルとして知られているCBA(H-2a)♀×DBA(H-2b)♂におけるasialo-GMI陽性細胞（uNK細胞）が、栄養膜を通過抜けている胎子を浸潤している像とよく似ている11)。CBA(H-2a)♀×DBA(H-2b)♂において、母体・胎子間における
MHCクラスIIのハプロタイプの相違により、MHC拘束性の細胞傷害性が起こり、uNK細胞が胎子に対して傷害性を示したとは考えられていな。ヒトにおいても母体-胎子間のHLAのハプロタイプの違いにより、流産は起こらないことが知られている。胎盤上にはT細胞の攻撃目標となるHLA-A,-Bは発現しておらず19), NK細胞の攻撃を回避するため19), 多型性の極めて乏しいHLA-Gを発現して17), T細胞やNK細胞の細胞傷害性による流産が起こらないと考えられている。これらのことより、Tg2Rβにおいても、母体-胎子間のMHCのハプロタイプの相違による、T細胞・NK細胞の細胞傷害性が起き、流産が起こったとは考えられない。Tg2Rβは、栄養膜細胞が不連続で、そこから迷路部にuNK細胞が侵入していた。これは「uNK細胞の機能が細胞傷害活性にあるのではなく、微細の維持を行っている」という仮説に反する。TgE26においてscid/scidの骨髄を移植すると、TgE26の流産が回避され、正常な妊娠が起こること10)ことから、uNK細胞が妊娠の維持に関与していることは疑問の余地がない。しかし、正常過程のuNK細胞の細胞傷害性が抑制されており、Tg2Rβの流産はその抑制がIL-2Rβ鎖の過剰発現により得られたために、uNK細胞が細胞傷害性を示したものかもしれない。栄養膜細胞に細胞傷害を与えることのできる唯一の細胞はLAK細胞であるので、Tg2RβにおけるuNK細胞がIL-2Rβ鎖の過剰発現により過剰な刺激を受けてLAK細胞に分化したのかもしれない。

透過型電子顕微鏡観察により、対照群の妊娠10日のuNK細胞は細胞質に対する核の割合が大きく、小型の細胞で、顔面は小さかった。対照の妊娠12日のuNK細胞の顔面の電子密度は均一で、周辺にはuNK細胞を特徴づける明らかなる日月型のcap構造を有していた。Tg2Rβの妊娠10日のuNK細胞は、細胞質突起を有するuNK細胞特有の形態を示していた。Tg2Rβの顔面は円形を呈しているものが少なく、樹円形-不整形をしていて、これらはcap構造も不整で、電子密度の高い部位と低い部位の境界が不明瞭であった。

また、細胞外に顕著に存在する顔面が見られた。つまり、Tg2RβのuNK細胞は、対照群の妊娠12日のものと似ており、Tg2RβのuNK細胞は分化が進化していた。この原因として、IL-2が、uNK細胞はIL-2ノックアウトマウスにおいても正常に分化・増殖するので、Tg2RβのuNK細胞の分化先進は、IL-2ではなく他のサイトカイシンが大きく関与していると思われる。妊娠子宮内にはIL-2はわずかにしか存在せず、IL-15が有意に存在しており、またIL-2Rβ鎖を使うサイトカインとしてIL-15が知られている16)ので、Tg2RβにおいてIL-2Rβ鎖の過剰発現により、uNK細胞が過剰な刺激を受けるために異常分化し、細胞傷害性を起こしたか、IL-15によりuNK細胞の通常は潜在している細胞傷害性が高まったのかもしれない。このことに関しては、更なる研究が必要である。

本研究におけるTg2Rβの流産はuNK細胞傷害性の活性による可能性があり、これまでの「uNK細胞は、胎盤形成・胎子の成長に寄与し、細胞傷害活性は極めて低く、流産に関与しない。」という仮説は、修正の必要があると思われる。

4. 要 約

マウスの着床・胎盤形成過程において、顔面性間膜細胞（GMG細胞）と呼ばれる子宮NK細胞が有能に出現する。その機能は血管新生・構築に関与し、胎盤形成や胎子発育に重要な役割をもとされる。今回、我々はIL-2Rβ鎖の過剰発現遺伝子変化マウスの子宮NK細胞を観察したところ、これまでとはまったく異なる様相を示した。
Tg2RβはNK細胞と表皮のThy-1+樹状細胞を欠損する。Tg2Rβの着床はその数もその時期も対照（同腹からのもの）と同様であったが、妊娠10日で47%の胎仔が死亡し、12日すべての胎仔が死亡あるいは異常であった。Tg2Rβにおける胎盤の重量は、妊娠10日から12日を進行するに従って減少していた。対照群では正常に発育した。Tg2Rβの妊娠10日に胎盤は間質域、基底脱落膜および迷路部すべてにおいて対照より小さく、胎仔吸収部の胎盤では子宮NK細胞は間質域や基底脱落膜だけでなく、迷路部に浸潤しており、胎仔が吸収されていない部の胎盤でも基底脱落膜に著しく浸潤していた。対照では子宮NK細胞の胎仔領域への浸潤はみられない。Tg2Rβの妊娠10日の子宮NK細胞自身の数とサイズ、細胞の数とサイズが、対照と比べて大きかった。妊娠12日ではすべての胎仔・胎盤が吸収されかかっているので、間質域や基底脱落膜は退縮中であり、子宮NK細胞数は減少していた。これらはIL-2Rβ鎖の過剰発現により、子宮NK細胞の極めて低い細胞傷害性が高まった可能性を示唆する。

文献
We have tried to make a triploid fowl for detection of a new molecule controlling the body size of animals. However, we could not make triploid by injection to hens. We will try to make a triploid fowl by technical improvements. In order to reveal the mechanism of Smad in spermatogenesis, the testicular localization of Smad 2 and Smad 3 involved in the intracellular signal transduction of activin, inhibin and transforming growth factor-beta (TGF-β) were examined under the influence of long and short photoperiods in Syrian hamsters. Smad family has a function of controlling body size in *C. elegans*. In situ hybridization detected both Smad 2 and Smad 3 mRNA in spermatogonia and premeiotic spermatocytes in the active testis exposed to a long photoperiod, as well as in the regressed testis exposed to a short photoperiod. Immunohistochemistry detected the two Smads in Leydig cells and the cytoplasm of spermatocytes in the active testis exposed to a long photoperiod. In the regressed testis exposed to a short photoperiod, both Smads proteins were detected in Leydig cells and accumulated in the nucleus of spermatocytes. Thus, Smad 2 and Smad 3 might mediate signals from TGF-β in spermatogenetic cells to the nucleus. We will continue to study the functions of Smad family, which is associated with controlling body size and cell cycles.

1. 目 的

動物には、種固有の大きさがあるが、それはどのような仕組みで決まっているのであろうか。たとえば哺乳類の中でも、マウスとヒトでは体重にすると約1000倍の差がある。またイヌのように、同じ種の中にも多様な大きさを持つ種も存在する。この固有の大きさはどの様な機構で決められているのであろうか。1つ1つの細胞の大きさは、どの動物種をとってもそれぞれほど変わりない。この点から、動物の大きさは細胞数のみによって決まるように考えられるが、たとえば5倍体イモリにおいては、細胞の大きさは1倍体の5倍の大きさであり、全体の細胞数は5分の1になり結果的に全体の組織の大きさは変わらない。また、最近発見された4倍体ラットでも、体の大きさは2倍体のものとほぼ変わらないことが報告されている。このことから、体の大きさを制御するための細胞分裂調節機構があり、単に細胞数や分裂回数を数えているのではなく、何らかの方法で実際に大きさを調整する因子が存在すると考えられる。

この体の大きさを調節していると考えられる因子の探索の進歩として本研究では、異数体ニホトリに注目した。異数体ニホトリは、卵子の減数分裂の異常により、染色体数が2倍になり、2倍体卵子が、精子と受精することによって3倍体の個体ができるものである。この3倍体ニホトリ個体の外見上の大きさは、他の異数体動物と同様に2
体固有と変わらない。この3倍体ニワトリについては、その染色体の形態、対合について、あるいは3倍体ニワトリは間性となることが多いので、その生殖系についての研究は比較的よく行われているが、個体全体の大きさ、臓器の大きさといった観点からの研究報告はほとんどみられない。そこで、形態学的、分子生物学的手法を用い、このニワトリ3倍体の体全体の大きさ、あるいは各臓器の大きさがどのような因子によって支配されているのかについて明らかにしたい。その方法として、まず2倍体ニワトリと3倍体ニワトリの各臓器における形態学的比較を行い、3倍体の形態学的な特徴を明らかにする。次に、この基礎的なデータをもとに、分子生物学的手法を用いて、培養細胞系、あるいは発生過程における各臓器の遺伝子発現量を比較し、細胞増殖、動物の大きさに関与していると考えられる既知因子の発現・機能解析、新規因子の単離・機能解析を行う。これらの結果を総合して、3倍体ニワトリの大きさがどのような因子に支配され、どのような機構で行われているのかについて明らかにしてゆきたい。異数体を持つ動物の大きさに関する研究は、異数体を持たない動物の大きさを解明する切り口にもなると考える。また、3倍体ニワトリは間性となることが多いので、その生殖系についての研究が比較的よく行われているが、日照条件の変化によってその大きさと機能を変化させることができるゴールデンハムスター精糸を用いて、TGF-βシグナル伝達、中でも、線虫でその体の大きさを決定する因子とされているSmadの機能解析を行った。

2. 材料および方法

2.1 3倍体ニワトリ個体の作出

まず、3倍体ニワトリを作出し、その飼育、繁殖、維持を行う。その方法として、コルセミドを

雌ニワトリに投与し、コルセミドを投与した雌ニワトリと正常雄ニワトリを交尾させて、3倍体ニワトリを作出する。

また、コントロール群として、2倍体ニワトリの飼育、繁殖、維持も同時に行い、いつでも必要な動物のサンプル採取を行えるようにする。

2.2 短日点灯条件下におけるゴールデンハムスター飼育

性的に成熟したACN系ゴールデンハムスター8週齢の雄を、室温23度、明期6時間/暗期18時間の短日条件下の飼育室に移し、飼育する。精巣の機能が停止し、重量が最小となるには13週間かかるため、常時動物をこの短日点灯条件の飼育室に補充し、いつでも必要な動物のサンプル採取を行うことができるようになる。

2.3 既知の因子（TGF-βファミリー、Smadファミリー）の発現パターンおよび機能解析

次に、細胞増殖の制御、動物全体の大きさに対し重要な役割を持つと考えられるTGF-β（transforming growth factor-β）ファミリーならびにその細胞内シグナル伝達因子であるSmadファミリーなどの既知の遺伝子あるいは遺伝子産物の発現と発現部位、発現細胞の同定を行う。短日点灯条件下と長日点灯条件下の遺伝子発現を比較し、その中で発現量に変化のみられる新規Smadファミリーの探索を縮小プライマーを用いたPCR法を用いて行い、これらの因子が精巢においてどのような機能を持っているのかについて解析する。

2.4 精巢器官培養系におけるSmadの発現解析

精巣から精細管を取り出し、CO₂インキュベーター内で培養を行う器官培養系を用いて、様々な細胞増殖因子などの添加を行い、Smadファミリーの機能解析を行う。
３．結果と考察

３倍体ニワトリの作出は現在のところ、残念ながら成功していないう。その原因として、飼育環境、飼育スペース、コルセミド投与量などの問題が考えられる。今後も、実験条件、実験環境の改善を行い、3 倍体ニワトリの作出を積極的に行っていきたい。

一方、3 倍体ニワトリは問性となることが多いので、その生殖巣についての研究が比較的よく行われているが、ゴールデンハムスター精巣を用いて、TGF-β ファミリーのシグナル伝達の機能解析を行った。特に、線虫において体全体の大きさを決定する遺伝子の一つである Smad に着目した。この Smad ファミリーは近年細胞増殖、がん、発生などの分野において非常に注目されている因子である。まず、ゴールデンハムスター精巣において日照条件の変化に伴う Smad ファミリーの発現変化についての解析を行った。Smad 2 mRNA の発現量は、長日条件下、短日条件下において変わらなかったが、短日条件下の Smad 3 mRNA の発現量は、長日条件と比較して顕著な増加が認められた。次に in situ ハイブリダイゼーションにおいて、Smad 2, Smad 3 mRNA は長日条件下、短日条件下ともに、間質のライディッヒ細胞、精上皮の精母細胞における発現が認められた。また、Smad 2, Smad 3 に対する特異的抗体を用いた免疫組織化学染色では、長日条件下、短日条件下の精巣とも、間質のライディッヒ細胞に局在していた。一方、精上皮において、長日条件下の精巣では精母細胞の細胞質に局在がみられたのに対し、短日条件下の精巣では、精母細胞の核内での局在が認められた。これらの結果から、Smad 2, Smad 3 は日照条件の変化により核内に移行し TGF-β あるいはアクチンのシグナルを伝達していると考えられた。ここで、短日条件下では、アクチンのシグナルを伝達していると考えるよりも、TGF-β のシグナルを伝達していると考えることが妥当であろう。なぜなら、短日条件下の精巣は、萎縮して大きさが小さくなった状態で、精子発生をしておらず、精巣において細胞増殖に対して活発化の機能を持つアクチンのシグナルの伝達は行われていないと考えるのが妥当である。TGF-β は細胞死、細胞周期の制御、細胞外マトリックスの増殖など様々な機能を持たており、実際どのようなシグナルを伝達しているかについてはさらなる研究が必要であろう。また、Smad は線虫においてその体の大きさを決定する重要な因子であることから、この Smad の機能の研究をさらに進めていくことにより、動物の大きさを決定する因子に関する研究がさらに進展すると考える。

４．要 約

動物には種固有の大きさがあるが、それはどのような仕組みで決まっているのであるか。本研究では、体の大きさを制御するための細胞分裂を調整する因子の探索の糸口として、3 倍体ニワトリに注目した。現在、コルセミド投与を行い、3 倍体ニワトリの作成を行っているが成功していないう。この 3 倍体ニワトリ個体の外見上の大きさは、他の異種体動物と同様に 2 倍体個体と変わらない。形態学的、分子生物学的手段を用い、このニワトリ 3 倍体の体全体の大きさ、あるいは各組織の大きさがどのような因子によって支配されているのかについて今後明らかにしたい。一方、3 倍体ニワトリは問性となることが多いので、その生殖巣についての研究が比較的よく行われている。今回、われわれは日照条件の変化によってその大きさと機能を変化させることができるゴールデンハムスター精巣を用いて、TGF-β シグナル伝達、中でも、線虫でその体の大きさを決定する因子とさ
れている Smad の機能解析を行った。Smad 2 mRNA の発現量は、長日条件下、短日条件下において変わらなかったが、短日条件下の Smad 3 mRNA の発現量は、長日条件と比較して顕著な増加が認められた。in situ ハイブリダイゼーションにおいて、Smad 2, Smad 3 mRNA は長日条件、短日条件ともに、間質のライディッヒ細胞、精上皮の精母細胞における発現が見られた。また、Smad 2, Smad 3 に対する特異的抗体を用いた免疫組織化学染色では、長日条件下、短日条件下の精巣とも、間質のライディッヒ細胞に局在していた。一方、精上皮において、長日条件下の精巣では精母細胞の細胞質に局在がみられたのに対し、短日条件下の精巣では、精母細胞の核内での局在が認められた。これらの結果から、日照条件の変化により、Smad 2, Smad 3 は核内に移行し、主に TGF-β のシグナルを伝達していると考えられた。Smad は線虫においてその体の大きさを決定する重要な因子であり、また細胞周期との関連が予想されていることから、この Smad の機能の研究を進めることにより、動物の大きさを決定する因子に関する研究がさらに進展すると考えられる。

文献
2) Kano K, Kurohmaru M, Hayashi Y, Taniguchi K. Smad 2 and Smad 3 accumulate in the nucleus of spermatocytes in the regressed testis of the Syrian hamster. Andrologia (revised)
DNA 分子プローブを利用したブタ品種の同定法の開発

Development of Molecular Probes Identifying Porcine Genetic Stocks

Hiroaki Yamamoto and *Seiji Sato
(Graduate School of Science, Tohoku University and *Central Research Institute, Itoham Foods Inc.)

To preserve domestic animals and to save genetic resources, appropriate markers should be developed to identify the livestock. This is also important to protect the benefit both of the original stock (strain) developers and consumers who can trace the origin of the meat sold at a store. We have tried to collect DNA markers easily utilized to identify porcine breeds. As a material, porcine meat was obtained at a store in addition to that supplied from Itoham Foods Inc. As a first step, melanocortin receptor (MCNR) genes are amplified because these genes encode proteins having a variety of roles including coat color expression. Intron-less structure of this gene family makes a PCR method easily applicable. Several primer sets were designed to amplify about 600 bp DNA fragments easily analyzed by a conventional DNA sequencer in a single path. They were subcloned and sequenced. Several single nucleotide polymorphism (SNP) sites have been found in the porcine MC5R gene.

1. 目 的

常に改良され生み出されつつある新しい家畜の品種を記載し、その遺伝子資源を保存すること、また必要なときには同定手段として用いることができるように、ブタをモデルとして遺伝学的なマーカー遺伝子を探索する事が、本研究の第一義的な目的である。たとえばこの遺伝子マーカーを用いて、店頭に並ぶ肉からその来歴を推定することも期待している。すでに確定された特定のブタ系統を分類できることはもちろん、それとは可視的には区別ができないが新たな品種を記載するために、よく使用される毛色や体色のマーカーを利用することも含めて、他のマーカーとなり得るゲノム遺伝子の探索の重要性を意識した。

これら遺伝子マーカーは、特定の家畜（品種）を示す標識として利用できる。それは生産者の利益を保護するだけでなく、消費者が必要とする時、その商品の来歴をトレースできることは、消費者の満足度にもつながる。

2. 方 法

まず、なるべく簡単にアクセスができるように、遺伝子は PCR 法にて増幅することにした。生産現場では比較的簡単に希望する組織が利用できるが、肉の来歴を、つまり店頭での品質管理にも、また消費者の満足度を上げるためにも、実際に店頭に並べられた肉から簡単に検査できるようにする必要がある、と考えた。

次に増幅する遺伝子は一度の PCR にて多くの
配列が得られるよう遺伝子ファミリーを構成するものとした。最近ヒトの赤毛を含む多くの哺乳動物の毛色がメラノコルチンタイプ１レセプター遺伝子（Mc1R）に支配されていることが報告された。特に３年前（Kijas et al., 1998）から一昨年にかけてブラスの毛色変異も当該の遺伝子の支配を受けることが報告された。

ここではこれらの情報を元に、多くの生理活性を示すメラノコルチンレセプター遺伝子（Mc1R－Mc5R）を一度のPCRで増幅すべく、共通配列をもとにPCRプライマーを設計することとした。

2.1 材料

ブラス肉

専門店の店頭より求めた。仕入れで間もないが、すでに凍結された後の肉である。さらに伊藤ハム中央研究所から供与された黒ブラス、白ブラスそれぞれの筋肉をも材料とした。

2.2 ゲノムDNAの調製

供与された凍結ブラス肉サンプルは、一部を凍結し、約1グラムの肉小片を切り分け、それを細切し、プロテアーゼKの処理（50 mMTris/HCl, pH 8.0, 100 mM NaCl, 25 mM EDTA, pH 8.0, 1% SDS, 150μg/ml ptoerinase K）を5℃にて一夜行い、その後フェノール・クロロホルムの処理を施した。さらにエタノール洗浄を経て、ひも状のDNA沈査を得る、という簡略な方法を用いた。DNAはTE（10 mM Tris/HCl, pH 7.5, 1 mM EDTA）に溶解し、4℃にて保存した。この手法を始め以後の分子生物学的手法は基本的にAusubelらのマニュアルに従った。

店頭より求めたブラス肉（すでに凍結させたケースに陳列されていた）は水蒸で持ち帰り、上記同様の方法でDNAを調製し材料とした。

2.3 遺伝子增幅法

得られたDNA断片のクローンを元に、目的とする遺伝子の全長をクローニングすることを容易にするために、また、塩基配列決定装置の一回の電気泳動の結果からその配列の遺伝子の推測を容易にするために、現在使用中の装置が信頼性を持って読みとれる長さ、約600塩基対を増幅できるように計画した。

ヒト、マウス、また報告のある配列についてはそれらも考慮し、メラノコルチンレセプター遺伝子ファミリーを増幅すべく、MC1R（ID：AF181964）の配列でnt 244-264に対応する縮退配列をフォワード配列、nt 823-843の相補配列に対応する縮退配列をリバース配列としてPCRを行った。

2.4 サブクローニング

増幅されたゲノムDNAフラグメントは、2％のアガロースゲルを用いて電気泳動を行い、600 bp付近のDNAフラグメントを切り出し、そこから遠心によりDNAフラグメントを回収した。それを鋭型に再度新たなプライマーで増幅し、さらに電気泳動をもう一度行い当該のDNAフラグメントをゲルから切り出し、TAクローニングベクター（Invitorogen）に、キット添付のマニュアルどおりの方法でサブクローニングした。

2.5 塩基配列の解析

塩基配列は、蛍光ラベルしたプライマーを用い、日立5500型自動塩基配列解析装置にて解析した。

3. 結果と考察

今回用いた縮退プライマーからはMC5Rの配列をもつクローンが多く得られた。この遺伝子は筋肉でもよく発現していることが知られているので、将来の発現解析を鑑みて、このクローンから解析をはじめた。この途中で、昨年の夏にアイオワ州立大のグループが部分配列ながらブラスMC5R遺伝子の配列を報告していることに気づいた（Kim et al., 2000）。
DNA分子プローブを利用したブタ品種の同定法の開発

<table>
<thead>
<tr>
<th></th>
<th>Thr</th>
<th>Ala</th>
<th>Pro</th>
<th>Gly</th>
<th>Ala</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
<td>303</td>
<td>466</td>
<td>503</td>
<td>648</td>
<td>660</td>
</tr>
</tbody>
</table>

SNP-sites of the porcine MC5R gene.
Nucleotides written over the line show those of the key sequence reported by Kim et al.
Bold letters show SNP sites detected in Japanese porcine stocks. Corresponding amino acids are also shown.

ごく最近まで検索にかからなかったものと思われるが、彼らが報告している配列とは異なり日本産ブタの特徴が明らかになってきたのでそれを報告する。

図はその部分配列 (AF 133793) を元にして、今回の解析で得られた本邦産のブタ Mc5R 配列をプロットしたものである。今回本研究で解析した配列は彼らの部分配列の nt243 から nt 806 に相当する。まず nt 303 に A>G の SNP (single nucleotide polymorphism) が発見された。これは Thr>Ala の変異を引き起こすが、彼らの報告にもこのサイトに多型のあることが報告されている。今回このサンプルで興味深いのは、中央研究所より供与されたブタの中で、少なくとも 2 匹の白ブタがこのサイトに変異を持っており、黒ブタにはそれが認められなかったことである。つまり、MC1R だけではなく、この遺伝子を用いてもブタ、白ブタを区別できることをこの結果は示唆している。次に nt 503 に G>A 変異を持つブタがいた。ただこの変異はアミノ酸では変化がなく同じ Pro をコードすることとなる。またこの個体は nt 648 に G>A 変異 (Gly>Arg) を、また nt 660 においても G>A 変異 (Ala>Thr) を示すことが分かった。さらに nt 461 で C>A 変異 (Ala>Ala) が予想されている。このサイトは配列の読みにくい場所であり、更なる解析が必要であるが、供与された 2 匹の白ブタがこのサイトに変異を持つようである。黒ブタからはこれらの SNP がまだ見つかっていない。さらに興味深いのは店頭で買い求めたブタンサンプルが nt 303 の変異を持っていたことである。この個体からは上記の場所以外での SNP を示す結果が得られていないので、研究所より供与された白ブタとは品種が異なるものと想定された。

数多くのクローンの中には、メラノコルチンリセプター以外の配列も含まれており、これらの多型については現在解析中である。中には組織適合性抗原に関与する領域の配列も含まれている。

今後の課題について
MC5R の全塩基配列がまだ報告されていないので、早急に解析する必要がある。また多型についても、日本産ブタの特徴が、特に白ブタについて明らかになったので、これらをもとに当該遺伝子を品種間で比較し、それらを区別できる SNP 検出用のプライマー作成が望まれる。この遺伝子の多型と、さらに現在解析中の遺伝子の多型を組み合わせることにより、店頭に並ぶブタ肉の生産者を特定できるキットを作成することも可能である。これらは、特許出願も鑑みて早急に進める必要があると考える。

4. 要約

育種により常に新しい品種が生み出されつつある家畜の遺伝学的な記載を可能にし、その品種のもつ利点について生産者のプライオリティーを保護するために、ブタをモデルシステムとし、遺伝学的なマーカーの探索を試みた。MC5R 遺伝子
に，日本産ブタの特徴をよく示す SNP を発見した。これらを用いれば，店頭に並ぶブタ肉から生産者を特定できるキットの構築が可能である。

文献
Recent Progress in Diagnosis for Bovine Spongiform Encephalopathy, and Studies in Transgenic Mice

Takashi Onodera (Faculty of Agriculture, University of Tokyo)

There are difficult problems in handling infectious materials and animals in prion diseases. Collaborations for investigations are not easy to sustain in long-term. In United Kingdoms availability of reference sample collections form vCJD surveillance unit and Animal Health Institute is essential. Pathogenesis of prion diseases is complex. We need to test different species such as cattle, sheep, pig and humans. Pathogenesis of prion disease varies depending on species and stage of infection. At this moment 3 tests were approved for BSE tests. Five tests were waiting for approval. However, more sensitive tests are needed. Work in sheep and scrapie is needed. For blood tests, we do not have sufficiently sensitive tests. Schmerr’s test is essentially as two-phase test; concentration plus testing. For trade between countries we need means to check infectivity of imported/exported animals. Non-invasive tests for animal and human blood, lymphoid tissues (tonsil biopsy) are needed as in HIV infection. We need better screen tests, then confirmatory tests. For blood transfusion this would open an enormous market. However, infectivity of blood from CJD patients is not certain. There in no proof so far. The American Red Cross is testing transfusion experiments from CJD patients to monkeys. Results are expected in about 7 years. UK has no public funds for doing that. Projects on this topic will be taken into particular consideration by the Medical Research Council of UK. In addition, surrogate markers would be of help.

1. 目 的

伝達性海綿状脳症は多くの哺乳動物種にみられる神経変性疾患であり、プリオンタンパクの異常によっておこるプリオン病である。ヒツジや牛などの反芻動物では、スクレイピー、牛海綿状脳症として知られており、現在でも深刻な問題となっている。また、興味深いことに、クーポーやオリックス類などの野生反芻動物は、ヒツジや牛などの家畜反芻動物に比べて、プリオン病発症までの潜伏期間が短く、発症後の経過が急激であることが知られている。

我々は、国際研究集会に参加して牛海綿状脳症診断の現状について聞き取りを行い、同時に欧州における牛海綿状脳症に対する、規制強化について情報を取り集める。現在、ヒツジスクレイピー病原体を迅速に検出できる系の確立が求められる。従って、オックスプリオン遺伝子を用いてトランスジェニックマウスを作製し、新たな検出系を開発する。
2. 方 法

英国ケンブリッジにおける英国医学会議 (Medical Research Council, MRC) 主催の海縁状脳症国際シンポジウムに参加し、情報収集を行った。イタリアパヴィア大学の A. Toniolo 博士と会い、医療現場におけるブリオン病の情報を集める。また、シロオリックスよりブリオン遺伝子を単離し、トランスジェニックマウスを作製した。さらにこのトランスジェニックマウスの性状について解析した。

3. 結果と考察

3.1 牛海縁状脳症（BSE）および変異型クロイツフェルトヤコブ病（CJD）の発生の歴史について

発生の仮説：1981-82年の間に英国でスクレイピー病原体に汚染された肉・骨粉（meat and bone meal, MBM）を飼料にしたことによる。1986年に第1例が発表されたが、それ以前の例は知られていない。80年代の始めに、燃料の節約で、MBM調整の時に用いる有機溶媒や蒸気作用を省いたことによる。あるいは、牛感染性の新たなブリオン株の出現による。1991年には年間3万例が発生したと考えられる。

2001年1月までの症例：
英国：180,500以上、アイルランド：600以上、ポルトガル：475、スイス：365、フランス：272、ドイツ：30、スペイン：24、 BELGUE：22、オランダ：9、デンマーク：2、リヒテンシュタイン：2、イタリア：2、ルクセンブルグ：1、オーストリア：1。

現在までの主な経過
1988年7月：英国において反芻動物由来の飼料を反芻動物に与えることの禁止。
1994年11月：英国において哺乳動物由来の飼料を反芻動物に与えることの禁止。
1996年5月：英国において哺乳動物由来の飼料を家畜に与えることの禁止。
1996年以降に生れた牛ではBSEの症例は非常に少ない。
1985-90年の間に、英国から欧州に60,000頭の生牛が英国の発生比率からすると1,668頭の発生が期待される。しかしながら、18例しか報告されていない。

動物園動物およびペットのブリオン病（Transmissible Spongiform Encephalopathy, TSE）は、牛科あるいは猫科に見られ、犬科動物にはみられない。

他の行政措置としては：
1995年：英国で椎骨部を食用、飼料に用いることの禁止。30カ月以上の牛を食すことの禁止。
1999年：英国で供血血液より白血球除去をして、輸血に用いることとした。
2000年：英国で病院において、病原体消毒を徹底させるための予算措置。

変異型CJDの例：発散性CJDの発症年齢の平均は65歳（50-75歳）であるが、変異型CJDの場合は25歳（10-45歳）である。変異型CJDの潜伏期は今の所5-10年である。変異型CJDの病理像は花様（florid）斑で、クールーの症例によく似ている。この花様斑は発散性CJDはみられない。同様のクールー斑がBSE材料を接種されたマカク猿脳においてもみられる。

1995-2000年の間のヒト変異型CJDの累積症例は94である。すべての例はブリオン遺伝子コドンがMet/Metである。英国でMet/Metのヒトは37%で、日本人では90%である。ブリオン遺伝子コドン129変異Val/Valで通常のCJDのなる
確率は3倍である。

3.2 英国におけるBSE伝達予防法の開発
この病原体は種を越えて感染する。牛の脳の発見器は、病原体の反射性と病理学的所見から、中枢神経、脳内の神経細胞、回腸遠位部である。1993年から英国でBSE発生数が減少しているが、1988年の飼料規制の後に生まれた牛にもBSE発症例がみられる。今までの結論
(1) 垂直伝達はほとんどみられない。
(2) 英国の地域に限局しない。
(3) 牛、豚の飼の汚染によるもので、工場ある
いは農場で両者が混合されたことが原因と
考えられる。
発症数の35%は1頭よりである。現在、飼料
および飼料添加物の混入検査法が考えられている。
それは、
(1) ELISAによる飼料中の牛、豚、ヤギタンパ
ク質の検出。
(2) 生肉材料に対する検査法が必要である（現
在、開発中である）。
(3) 基礎データを得るため、飼料中の牛、豚、
ヤギタンパク質の継続的サーベイランスが
必要である。
今後の調査のために多大の予算の投資が必要で
ある。飼料中の混入が流行を長引かせていると考
えられる。

3.3 英国のヒトにおける伝達予防法の開発
伝達予防のためには次の品目対策を考えなけれ
ばならない。
(1) 医薬品（英国では2001年7月から英国の材
料を用いないよう、法規制）。
(2) ワクチン（英国では2001年7月から英国の
材料を用いないよう、法規制）。
(3) 医原性による伝達の予防（医療機関におけ
る汚染除去、消毒徹底のプログラム）。
(4) 血液使用の規制、自己血液の使用。血液か
らの白血球の除去は1999年より実施。
(5) 英国民に由来する血液、血漿を血液製剤に
用いない。
(6) 手術用具の特殊消毒（神経外科、眼科、肩
桃・リンパ節の外科的除去において）。
(7) 年間2億ポンドを医療機関における施設の
整備、汚染の除去に費やす。
(8) さらに年間2500万ポンドを扁桃腺等の除去
手術施設の整備に費やす。
(9) 各地方（State）に変異型CJD対策委員会
を設ける（ライセスターシャー地方に お
いて、変異型CJDの集団発生がみられた。
肉屋の食品調理過程における汚染が疑われ
ている）。

3.4 BSE診断の最近の方法
病原体は、核酸が無く、2カ所の糖鎖結合部位
を持ち、電気泳動によって3種のバンド（グリコ
フォーム）がみられる。それは、無糖鎖、1本糖
鎖、2本糖鎖のバンドである。
病原体の定量：マウス脳を用いたバイオアッセ
イが最も感度が高い。
免疫化学診断：英国では2種類のモノクローナ
ル抗体が用いられている。N末端に対するものと
してFH11（2カ所のエピトープと反応）と3F4
（1エピトープと反応）のものである。その際、
病原体濃度の高い時点におけるみ異常型プリオ
ンタンパク（PrPsc）が検出可能である。病原体
低濃度では、正常型プリオンタンパク（PrPc）の
みが検出される。
J. Hopeのグループは、蛻光ELISAにより、
バイオアッセイと同感度の検出法を開発したと述
べている。この方法では、nmolのレベルまで検
出可能としている。
彼等は立体構造特異的に反応する系（RNAア
プタマー）を開発していると述べている。彼等は
アプタマー法こそ未来の検出法と述べている。従
って、タンパク質と RNA アプトマーの相互作用に関する研究が必要である。

RNA アプトマーはモノクローナル抗体より、動物タンパク質に対して高感度に作用すると考えられる。動物ゲノムプロジェクトがこの研究を助けると考えられる。RNA アプトマーは血液中の病原体を検出するのに有効となるかも知れない。現在実験中の BSE 病原体感染羊の血中における病原体の濃度は 1-100 ID50/ml と考えられる。

さらに、赤血球分化因子や 14-3-3タンパクのような関連マーカーが、感染臓器より放出されたり、逆に抑制されたりするので、診断に用いられるであろう。

3.5 英国における BSE スクリーニングに関する英国農業省の見解

BSE は英国のみならず欧州全体の問題である。将来、米国やアジアにおける問題も否定できない。しかもスクリープは全世界に拡散している。従って、各国とも充分な監視が必要である。現在認定されている検出キットは次の様である。

(1) プリオニックス社（ウェスタンプロティッジ）、(2) Enfer 社（ELISA）、(3) CEA/BioRad（ELISA）である。しかしこれらは生前診断でなく、感度はマウス接種法の 1/1,000～1/10,000 である。これらの検出キットでは preclinicalな時期のかなり後期（発病の 1～2カ月前）の感染例のみが検出される。これから開発される診断法には次のような条件が満たされなければならない。

(1) 単独で迅速でなければならない。
(2) 動物が生きていて、preclinicalな状態で診断が行われる。
(3) と畜場の材料に直接用いられるほど簡便なものであること。

市場規模：英国および欧州連合（EU）で 1年間にと殺される動物の数は牛 2,800万頭、羊 6,200万頭である。

もし将来、生体の直接検査が可能であれば、その国スクリープや他の伝染性脳症を撲滅できる。また、2～3年規模のプロジェクト予算については次のような考慮が必要とされる。

（1）農務省、大学、産業界との協力、（2）学術的な判断、（3）必要性に対する対応。

3.6 生物製剤（細菌培地，組織培養培地，ワクチン）への病原体混入の問題

（1） ベプトン

現在の調整法でブリオン病原体は消滅しない。また食品添加物として、骨格筋、骨粉、乳タンパク、野菜成分が用いられるがそれらの消毒も問題である。消化剤（細菌，動物，植物由来）や酸処理を組み合わせた病原体不活化法の開発が必要である。

（2） 牛胎児血漿，牛血漿，牛血清アルプミンからの汚染の可能性

英国の Oxoid 社は 1989年から血清類は EU 以外の国（オーストリア，ニュージーランド，米国）より輸入している。OIE のレポートおよび SRM（specific risk material 特定危険物質）を考慮し、それらのものは製剤に用いないようにしている。

英国では 1999年から牛製品（ゼラチン，コラーゲン，アミノ酸，ペプチド）を食品に用いる際は、消毒法が規定されている。この規制は医薬品，医療器具，化粧品に対して行われる。輸入においては、非感染証明書が必要である。OIE 規準および SRM に含まれなくても、BSE 非汚染国からのものでも，使用を拒否することができる。

安全性を考慮する際に，次段階で開発されるべきは植物由来ベプトンの使用である。GMO-free（非遺伝子組換え体）のエンドウマメよりベプトン合成が可能である。その際，細菌由来の酵素（非ベプトン培地で増殖）を用いて加工される。今後培地の規制はさらに強くなると考えられるが，
次のような解決策が可能である。

(1) 輸出国に対する規制
(2) 特定（閉鎖系で充分にコントロールされてい る）集団動物のみを使用
(3) 用いた動物に対する徹底的な病理検査
(4) 動物由来のものは用いないようにする

3.7 シロオリックス型ブリオン遺伝子マウス の作製
シロオリックスブリオン遺伝子トランスジェニックマウスを作製し、スクレイピー病原体を感染させ、感受性の増加を観察した。マウスに筑波－1株を感染させたところ、オリックス遺伝子を持つトランスジェニックマウスは litter-mate に比べ、20〜30日ほど潜伏期の短縮が見られた（Fig. 1）。

Fig. 1 Expression of Or Prnp mRNA in Tg (OrPr-np+)/Prnp+/- mouse by RT-PCR and lysis

3.8 シロオリックスブリオン遺伝子マウスの 性状解析
ブリオン遺伝子欠損マウスとの交配による2回目の繁殖により生まれた子に対しても検索を行った。

RT-PCR 法により o-Prnp mRNA の発現が確認された。発現は心臓に強くみられ、脳、腎臓、 筋肉で薄くバンドが観察され、臓器により発現率 に差のあることが考えられた。また、ノーザンプロッティングを用いて確認したところ、心臓、筋 肉、脳において強度の RNA の発現が見られた（Fig. 2）。

o-Prnp mRNA が心臓において強く発現していることから、オリックスブリオンタンパクが心 臓で大量に産生することが考えられた。その影響を調べるために、マウス心電図を観察した。その 結果、50週齢以上の o-Prnp マウスについて、QRS 波において、波形の異常が観察された。こ れらの症例を重ねたところ、現在32匹のトランスジェニックマウスの内、18匹に波形の異常が観察された。また病理学的には全てのトランスジェニックマウスに心臓病変が観察された。同週齢にお ける litter-mate には何等異常が病理組織・心電図とも観察されなかった。

現在これらの遺伝子変異マウスを用いてスクレイピー（筑波1株）の感染実験をさらに行っている。

4. 要 約
現在英国では BSE の開発研究は充分に行われているように思われる。しかしながら、病原体や 感染動物の取扱いには依然困難が伴っている。し かも開発チームを長期に維持することには困難が 伴う。英囯の研究体制の強化のためには変異型 CJD サーベイランス機関や家畜衛生研究所から の材料提供が必須である。またブリオン病原体は 複雑な背景を有し、ヒトを含めた様々な動物種
（牛、羊、豚）の研究が必要である。動物種や病気の段階により発病病理は異なる。現在3種類の検査キットが公認されているが、さらに5種類のキットが使用申請されている。さらに高感度の検査キットが必要である。恐らくヒトの動物モデルとしては羊が最も適当であろう。血液検査には未だ充分な感度を示すキットが存在しないSchmerrのテストは成分の濃縮と新規検査手段の組合せである。国の間の物資の移動については、輸出国・輸入国両者による検査手段の開発が必要である。その際簡単な検査法（non-invasive tests）が必要である。現在は血液、リンパ組織、扁桃腺がその候補に挙げられる。そのためにはスクリーニングの改善、その後の確定診断の改善が必要である。輸血の問題は極めて重要である。血液製剤の市場規模も莫大である。しかし通常のCJD患者血漿が病原体を含むかについては不明である。現在検査法も存在しない。米国赤十字はCJD患者からの血液を猿に注入して経過を観察している。7年後に結果が判明する。英国は患者由来の猿感染研究は行われていない。さらに、赤血球分化因子や14-3-3タンパクのような関連マーカーが、感染細胞より放出されたり、逆に抑制されたりするので、診断に用いられるであろう。当教室で開発したトランスジェニックマウスにおいても一定の感染後潜伏期短縮が観察された。

文 献
Studies on the Infectivity of Human Intestinal Spirochetes to Animals and Birds

Yoshikazu Adachi (College of Agriculture, Ibaraki University)

Experimental infection of one-day-old chicks and one-month-old mice with intestinal spirochete with broad host range was performed. The results demonstrated that B. pilosicoli colonized the cecal surface of the chicks but did not colonize that of the mice, while B. hyodysenteriae colonized the both animals. By scanning electron microscopy, the cecal surfaces were covered with B. pilosicoli. As further experiment, we analyzed genetically 16SrDNA of six canine isolates from street dogs and compared with those of type strains (B. innocens, B. hyodysenteriae, B. pilosicoli, and B. aalborgi). The results demonstrated that the isolates were different from those type strains. There strains could be new species, On the other hand, the human spirochete isolates resembling B. aalborgi were genetically analysed.

The alignment of 16Sribosomal DNA was consistent among the isolates and the alignment was slightly different from that of B. aalborgi.

1. 目的

腸管スピロヘータ症は, 人畜共通感染症で, 当初, 腸の腸管スピロヘータ症の原因菌として知られていたB. pilosicoliが最も宿主域が広く, 人や犬にも感染することが報告されるようになっ
た。最近, PCR手法を用いて人の糞便中のスピロヘータ(B. aalborgiおよびB. pilosicoli)を検出することが可能との報告もされた。それによる
tと, これら2種の16SrRNAに特異的プライマーを用いている。また, 検出限界菌量としては純培養菌で2×10²および7×10⁵個の細胞を必要とし
糞便の場合, 1g当たり5×10⁴および1×
10⁵個の細胞を必要とすることを示唆している。人から頻繁に分離されるB. aalborgiがの分離が
非常に難しい現状から, PCRによる検出手法は非常に有効な診断手法であるとして報告した3)。一方Brachyspira属の菌はイヌおよび豚から分離される例も知られている。我々は犬からの分離を試み, 約22%の割合で分離されることを示し
た3)。これら分離菌について遺伝子解析をし, その分類を行うと同時に, その病原性について我々がすでに報告した鳥幼雛を用いた感染実験4)を行
い明らかにすることを目的に研究を実施した。

2. 方法

(1) 供試菌株: B. hyodysenteriae ATCC 27164, B. innocens ATCC 29796, B. pilosicoli P43/6, およびB. aalborgi NCTC 11492および
犬ならびに人から分離された菌株を用いた。
培養：菌株の培養には5%羊血液加トリプチケース・ソイ寒天培地（TSA, BBL, U.S.A）を用い、ガスパックシステム（BBL, U.S.A）によって37℃で24時間嫌気培養した後、菌を収穫し以下の実験に用いた。

（2）感染実験：実験には農林水産省畜産試験場から提供されたフ化後24時間以内のニワトリ雛鶏を用いた。鶏はホルマリンで泡蒸した陰圧式アイソレーターを用いた。飼料は雛鶏用を不問にし、水は自由飲水とした。接種菌としては血液寒天培地で3日間培養された菌をMacFarland No.2に調整し接種菌とした。接種には1羽当たり0.5ml接種した。接種菌に対して寒天培地に塗布し発育コロニー数を算出したところ10⁶/mlであった。感染後の異常や盲腸内容物からの菌の分離にはスペクチノマイシン添加羊血液加TSAを用い分離菌数を測定した。さらに、感染脇腸は走査型電子顕微鏡および透過型電子顕微鏡で観察した。

（3）PCRおよびシークエンス：各分離スピロヘータ株の全16SrDNAの塩基配列の決定にはB. hydysenteriae ATCC 27164の16SrDNAから作成したプライマーを用いた。PCR（サーマルサイクレア、Takara）で増幅後実施した。またB.pilosicoliの診断にはこの種に特異の16SrDNAの塩基配列に基づくプライマーを作成し菌の同定および塩基配列の決定に用いた。塩基配列の決定にはShimazu DSQ1000L シークエンサーを用いた。

SDSポリアクリルアミド・ゲル電気泳動（SDS-PAGE）：SDS-PAGEはLemmliの方法に従い実施した。

イッソブロックティング法：イッソブロックティングはSakuraiとAdachiの方法に従い実施した。

3. 結果および考察

3.1 熱亀鶏およびCFIマウスへの感染実験

まず、B. hydysenteriaeに対し感受性の高いCFIマウスを感染実験に用いたところB.pilosicoliは感染せず、B. hydysenteriaeのみ感染した。その感染21日目に盲腸内容物からの分離菌数値は8.04±0.45と高かった（Table 1）。しかし、B.pilosicoliがマウスには定着しないことから、B.pilosicoliを実験的に実験動物に定着させるため、フ化後24時間以内の鶏鶏に感染させ15日に剖検し盲腸内容物からの菌の分離を実施し、選択培地に発育した内容物1g当たりのコロニー数（CFU, colony forming units）を調べ、その値をlog CFUで表わし平均値±偏差値で示したところ8.63±0.35と非常に高い値であった（Table 2）。この鶏盲腸への定着を走査および透過型電子顕微鏡で調べた。走査型電子顕微鏡写真をFig.1aに、

<table>
<thead>
<tr>
<th>Table 1</th>
<th>Comparison of susceptibility of CFI mice to B. hydysenteriae and B. pilosicoli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inocula</td>
<td>Isolation rate</td>
</tr>
<tr>
<td>B.pilosicoli</td>
<td>0/15</td>
</tr>
<tr>
<td>B. hydysenteriae</td>
<td>13/13</td>
</tr>
<tr>
<td>Broth</td>
<td>0/5</td>
</tr>
</tbody>
</table>

CFI mice inoculated with the spirochetes were necropsied 21 days after inoculation.
1) CFU shows colony forming unit and the values were calculated as logarithms.
2) ND shows 'not detect'.
3) Mean value ± standard deviation

Table 2 | Comparison of susceptibility of one-day old chicks to B. hydysenteriae and B. pilosicoli |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Inocula</td>
<td>Isolation rate</td>
</tr>
<tr>
<td>B.pilosicoli</td>
<td>9/9</td>
</tr>
<tr>
<td>B. hydysenteriae</td>
<td>4/4</td>
</tr>
<tr>
<td>Broth</td>
<td>0/0</td>
</tr>
</tbody>
</table>

Chicks inoculated with the spirochetes were necropsied 16 days after inoculation.
1) CFU shows colony forming unit and the values were calculated as logarithms.
2) ND shows 'not detect'.
透過型電子顕微鏡写真を Fig.1a に示した。これらの図から多数のスピロヘータが盲腸上皮の微細毛の間に頭を突っ込んでいるのが観察された。一方、対照として感染させた B. hyodysenteriae は盲腸内容物の 8.02 ± 0.16 と高い log CFU 値を示した（Table 2）。このことから風化後 24 時間以内の鶏飼は Brachyspira 属の感染実験に通じていると判断された。

3.2 人、および犬から分離された Brachyspira の 16SrDNA 解析による遺伝学的分類

豚、人および犬から分離された腸管スピロヘータについて、まず PCR 手法を用いた種の判定を実施した。その結果ビーグル犬の出血性下痢から分離された 2 株は B. pilosicoli と決定された野犬から分離された 29 株について PCR によって 3 菌種（B. hyodysenteriae, B. innocens, および B. pilosicoli）に分けられたが、それらの溶血性、および生化学的性状が標準株のそれと異なることから、それぞれ 2 株ずつの 6 株の 16SrDNA の塩基配列の解析を実施したところ B. pilosicoli の特異プライマーで增幅できる 16SrDNA のすべての塩基配列を決定しその相同性を出し、標準株と比較したところ B. nyodysenteriae や B. innocens に近似であるが、B. pilosicoli とは異なる菌種である

Table 3 The comparison of homology matrix of 16S ribosomal DNA among the 6 canine isolates to the reference strains.

<table>
<thead>
<tr>
<th>Isolates used</th>
<th>B. hyodysenteriae ATCC27164</th>
<th>B. hyodysenteriae ATCC31212</th>
<th>B. pilosicoli ATCC51139</th>
<th>B. innocens ATCC29796</th>
</tr>
</thead>
<tbody>
<tr>
<td>D1d/6/15a)</td>
<td>98.7</td>
<td>98.7</td>
<td>97.7</td>
<td>98.8</td>
</tr>
<tr>
<td>D4d/6/15a)</td>
<td>98.8</td>
<td>98.8</td>
<td>97.8</td>
<td>98.9</td>
</tr>
<tr>
<td>D5a/11/9b)</td>
<td>98.2</td>
<td>98.2</td>
<td>97.0</td>
<td>98.1</td>
</tr>
<tr>
<td>D8d/10/25c)</td>
<td>98.1</td>
<td>98.1</td>
<td>97.0</td>
<td>98.1</td>
</tr>
<tr>
<td>D5c/10/25c)</td>
<td>98.8</td>
<td>98.8</td>
<td>97.7</td>
<td>98.9</td>
</tr>
<tr>
<td>D6d/6/15c)</td>
<td>98.6</td>
<td>98.6</td>
<td>97.4</td>
<td>98.7</td>
</tr>
</tbody>
</table>

a) Canine isolates identified as B. innocens.
b) Canine isolates identified as B. pilosicoli.

Table 4 The comparison of the specific positions of 16S rDNA among the 6 canine isolates and three species in the genus Brachyspira

<table>
<thead>
<tr>
<th>Strains used</th>
<th>The base positions of 16S rDNA</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>155</td>
</tr>
<tr>
<td>B. hyodysenteriae</td>
<td>T</td>
</tr>
<tr>
<td>ATCC27164</td>
<td></td>
</tr>
<tr>
<td>B. hyodysenteriae</td>
<td>T</td>
</tr>
<tr>
<td>ATCC31212</td>
<td></td>
</tr>
<tr>
<td>B. innocens</td>
<td>C</td>
</tr>
<tr>
<td>ATCC29796</td>
<td></td>
</tr>
<tr>
<td>B. pilosicioli</td>
<td>T</td>
</tr>
<tr>
<td>ATCC51139</td>
<td></td>
</tr>
</tbody>
</table>

D1d/6/15^a C G T A G G - - G G -
D4d/6/15^a C G T A G G - - G G -
D5a/11/9^b C G T G G G - - G G -
D8d/10/25^b C G T G G G - - G G -
D5c/10/25^c T T C A A G - - G G -
D6d/6/15^c C G T A G G - - G G -

^a Canine isolates identified as B. innocens.
^b Canine isolates identified as B. pilosicioli.
^c Canine isolates identified as B. hyodysenteriae.

ことが明らかとなった（Table 3）。その塩基の違いを Table 4 に示した。しかし、B. hyodysenteriae か B. innocens かは判別できる新種の可能性も示唆された。また、人から分離された菌株について16SrDNAを調べB. aalborgi NCTCC11492株と比較したところそれらの間の相対性は99.6%と非常に高い値であった。B. hyodysenteriae, B. innocens, およびB. pilosicioli とはそれぞれ96.6, 96.6, および95.9であった（Table 5）。

またB. aalborgiとの間の相対性の違い塩基配列の違いを調べたところB. aalborgiの177番目のCがTに、379番目のGがTに、399番目のTがCに、569番目のAがGに1389番目のCがAに変わっていた（Table 6）。これら塩基配列の異なる菌株については現在さらに生物学的、遺伝学的に検討中である。以上の結果から Brachyspira 属の菌種が人畜共通の感染症であるという説明を得ることはできなかったが、最近、オーストラリアのHampsonらは下痢患者から B. pilosicioli を分離しそれらが義烏幼雛に定着することを明らかにした¹¹。Muniappaら⁹は人由来のB. pilosicioliが

Table 5 The comparison of the homology matrix among the ten strains used

<table>
<thead>
<tr>
<th></th>
<th>B.aal</th>
<th>B.ly01</th>
<th>B.ly02</th>
<th>B.inno</th>
<th>B.pilo</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIS 1</td>
<td>99.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>95.9</td>
</tr>
<tr>
<td>HIS 2</td>
<td>99.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>95.9</td>
</tr>
<tr>
<td>HIS 3</td>
<td>99.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>95.9</td>
</tr>
<tr>
<td>HIS 4</td>
<td>99.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>95.9</td>
</tr>
<tr>
<td>HIS 5</td>
<td>99.6</td>
<td>96.6</td>
<td>96.6</td>
<td>96.6</td>
<td>95.9</td>
</tr>
</tbody>
</table>

B.aal shows B. aalborgi NCTC 11492
B.ly01 shows B. hyodysenteriae ATCC 27164
B.ly02 shows B. hyodysenteriae ATCC 31212
B.inno shows B. hyodysenteriae ATCC 27164
B.pilo shows B. pilosicioli Y/43/6/78 (ATCC51139)

Table 6 The comparison of the specific postion of 16S rDNA among B. aalborgi and five strains of intestinal spirochetes

<table>
<thead>
<tr>
<th>塩基位置(bp)</th>
<th>177</th>
<th>379</th>
<th>399</th>
<th>568</th>
<th>1389</th>
</tr>
</thead>
<tbody>
<tr>
<td>B. aalborgi</td>
<td>C</td>
<td>T</td>
<td>C</td>
<td>A</td>
<td>C</td>
</tr>
<tr>
<td>HIS 1</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>HIS 2</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>HIS 3</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>HIS 4</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>G</td>
<td>A</td>
</tr>
<tr>
<td>HIS 5</td>
<td>T</td>
<td>T</td>
<td>C</td>
<td>G</td>
<td>A</td>
</tr>
</tbody>
</table>

B. aalborgi NCTC 11492
幼鰐に定着することを報告した。また、Trott
らは B. pilosicoli の遺伝的疫学調査を行い、B. pilosicoli が人を含む異種動物間での感染のある
ことを示し、人畜共通感染症として報告した。こ
れらの報告は Brachyspira 属のある種の菌、特に、
B. pilosicoli が人畜共通の感染症の原因菌である
ことを強く示唆している。

4. 要 約

B. pilosicoli を CF1マウスおよび鶏幼鰐を用い
て感染実験を行ったところ鶏幼鰐の盲腸にのみ
B. pilosicoli が定着することが明らかとなった。
豚、犬および人から分離された菌株の同定を16
SrDNA の塩基配列を決定することで行った。そ
の結果、豚由来株は B. pilosicoli、ビーグル犬か
ら分離された菌株は B. pilosicoli、野犬から分離
された菌株は B. hyodysenteriae あるいは B. in-
nocens に近縁の菌であることが推測された。ま
た、人から分離された菌株は B. aalborgi に近縁

の菌株であると考えられた。

文 献
Vet. Soc. 9, 176, 1986.
2) Adachi, Y. and Ogawa, Y. 平成11年度食肉に関
3) Duhamel, G. E., Hunsaker, B. D., Mathiesen, and
5) Mikosza A. S. J., Margawani, K. R., Brooke, C. J.,
Hampson, D. J. FEMS Microbiol. Lett., 197, 167-
6) Muniappa, N., Duhamel, G. E., Mathiesen, and
7) Ochiai, S., ADACHI, Y., and Mori, Microbiol.
8) Sakurai, T. and Adachi, Y. J. [et. Med. Sci., 60,
9) Songer, J. G., Kinyon, J. M., and Harris, D. L. J.
10) Sueyoshi, M., and Adachi, Y. Infect. Immun.,
58, 3348-3362, 1990.
11) Trott, D. J., Mikosza, A. S. J., Combs, B. G., Ox-
berry, S. L., and Hampson, D. J. Int. J. Syst. Bacter-
リポソーム型経粘膜ワクチンによる
鶏サルモネラ症（鶏パラチフス）の予防

Protection against Salmonellosis in Chicken by Liposomal Oral Vaccine

渡来仁（大阪府立大学大学院農学生命科学研究科）

Shinobu Watarai (Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University)

In order to evaluate the usefulness of liposomes composed of DPPC, DPPS, and Chol (1:1:2, molar ratio) (PC-liposome) as vehicle for the antigen delivery system in the induction of a protective mucosal immune response against infection from Salmonella enterica serovar enteritidis, we examined the induction of intestinal mucosal immune responses against S. enteritidis by immunizing chickens with liposome-associated antigen. Intraocular immunization induced serum IgA, IgG and IgM responses. Also, significant IgA and IgG antibodies were detected in the intestinal tract. Immunization with antigen alone induced only IgG response in the intestine. S. enteritidis-specific antibody-secreting lymphocytes were detected in the spleen and lamina propria of the intestinal tract of immunized chickens. Furthermore, the inhibitory effect of intestinal antibodies against S. enteritidis on adherence of S. enteritidis to HeLa cell was tested. The adherence of S. enteritidis to the cells was inhibited by the addition of intestinal fluid from chikens intraocularly immunized with PS-liposome containing S. enteritidis antigen. These results suggest that PS-liposome would serve effectively as an oral delivery vehicle for inducing mucosal immune responses, and also that this liposome antigen delivery system has potential in stimulating intestinal antibody responses that may be helpful in the protection of chiken against infection from S. enteritidis.

1. 目的

鶏サルモネラ症（鶏パラチフス）は、鶏の急性敗血症性の消化器系伝染病である。感染はほとんどの腸管に限られ、日齢の進んだものほど自然に回復する傾向が強いが、菌は内蔵、特に卵巣に潜伏し持続感染を起こす。そのため健康保菌鶏が多く、それにより汚染された食品（卵や肉など）がサルモネラ食中毒の原因となり、公衆衛生上重要な問題となっている。我が国ではこの数年来、Salmonella enteritidis（S.E.）を原因とする食中毒が多くとくにクローズアップされている。本症に対するワクチンが作製されてはいるが、その効果については十分とはいえないと。宿主である鶏への主なS.E.感染経路が経粘膜感染1-21であることを考えると、実際の感染防御に有効となる粘膜（腸管）局所に免疫応答を誘導できる粘膜ワクチンの開発が重要になる。しかしながら、鶏のS.E.感染を予防するための効果的な粘膜ワクチンの開発はまだ成されていない。

リポソームは、脂質二重層から成る小胞である。その膜上には種々の病原体の抗原決定基をもつ物
リポソーム型經粘膜ワクチンによる腸サルモネラ症（鶏パラチフス）の予防

質を再構成することができ、再構成されたリポソームは免疫担当細胞への抗原の提示をより有効なものをするように働く。また、細菌やウイルスの有効成分をリポソームに再構成する際、種々の免疫賦活物質を加えることにより、免疫効果をより高めることもできる3）。これまで我々は、pH 2.0、

観察ならびに胆汁酸存在下でも安定なリポソーム
（経口投与可能なリポソーム）の脂質組成を明らかにするとともに、それらのリポソームが、粘膜投与により粘膜局所の免疫系ならびに全身の免疫系を良好に賦活化することを明らかにした4,5）。

リポソームを構成する脂質は、生体由来のものであるため毒性も無い。

本研究の目的は、免疫担当細胞への抗原の提示法として優れた働きを持つリポソームを、腸サルモネラ症の予防のための経粘膜ワクチンとして応用し、病原体の感染阻止に有効な免疫応答を効率よく誘導できる免疫方法の開発ならびにそれに基づいた病原体を持たない卵肉の生産を目指した基礎的研究を行うことにある。

2. 材料および方法

（1）脂質と試薬：ジパルミトイルホスファチジルセリン（DPPS）ならびにコレステロール（Chol）はシグマメキシカル社から、ジパルミトイルホスファチルコリン（DPPC）は日本精薬社から、ウシ血清アルブミン（BSA）は和光純薬㈱からそれぞれ購入した。

（2）供試動物：5週齢の白色レグホン種ハイライン系ニワトリを、日本生物科学研究所より購入し、本研究室で8週齢まで飼育し実験に使用した。

（3）不活化S.E.抗原の調整：Salmonella enteritidis（S.E.）（PT4，Y-24株）をトリプトソーヤブイヨン（ニッスイ製薬）で、37℃、6時間振とう培養した。その後、最終濃度1％になるようにホルマリンを加え、24時間振とうし、不活化させた。不活化菌体は超音波処理を行った後、不活化S.E.抗原として実験に用いた。

（4）リポソームの作製と免疫：免疫用リポソームは、既報3）の方法により作製した。

実験1……8週齢のニワトリを3つのグループ

に分け（1グループ3羽）、免疫ルートの選定実験を行った。グループA，DPPC（10μmol），DPPS（10μmol），Chol（20μmol）からなるリポソームに，S.E.抗原を4mg封入し点鼻投与した。グループB，DPPC（10μmol），DPPS（10μmol），Chol（20μmol）からなるリポソームに，S.E.抗原を4mg封入し点眼投与した。グループC，DPPC（10μmol），DPPS（10μmol），Chol（20μmol）からなるリポソームに，S.E.抗原を4mg封入し経口投与した。

各グループとも初回免疫後，2週間目，4週間目にも同じ組成のリポソームをそれぞれのルートで投与し（計3回免疫），最終免疫後2週間目に全採血を行うとともに，腸管抗体を探取した。

実験2……8週齢のニワトリを3つのグループ

に分け（1グループ3羽），点眼免疫を行った。グループA，DPPC（10μmol），DPPS（10μmol），Chol（20μmol）からなるリポソームに，S.E.抗原を200μg封入したものを作製し，点眼投与した。グループB，DPPC（10μmol），DPPS（10μmol），Chol（20μmol）からなるリポソームに，S.E.抗原を1mg封入したものを作製し，点眼投与した。グループC，DPPC（10μmol），DPPS（10μmol），Chol（20μmol）からなるリポソームに，S.E.抗原を2mg封入したものを作製し，点眼投与した。

各グループとも初回免疫後，2週間目にも同じ組成のリポソームを点眼投与し（計2回点眼免疫），最終免疫後2週間目に全採血を行うとともに，腸管抗体を採取した。
実験 3．．．．8 週齢のニワトリを 3 つのグループに分け（1 グループ 3 羽）、点眼免疫を行った。グループ A, S.E. 抗原のみを 200μg 点眼投与した。グループ B, S.E. 抗原のみを 1 mg 点眼投与した。グループ C, S.E. 抗原のみを 2 mg 点眼投与した。

各グループとも初回免疫後、2 週間目にも同じ dose の S.E. 抗原のみを点眼投与し（計 2 回点眼免疫）、最終免疫後 2 週間目に全採血を行うとともに、腸管抗体を採取した。

実験 4．．．．8 週齢のニワトリ（3 羽）に、DPPC（10μmol）、DPPS（10μmol）、Chol（20μmol）からなるリポソームに、S.E. 抗原を 1 mg 封入したものを作製し、点眼投与した。2 週間後、同じ組成のリポソームでさらに点眼免疫し、2 週間後（初回免疫から 4 週目に）脾臓リンパ球ならびに腸管粘膜固有層リンパ球（LPL）を採取した。

実験 1 と実験 2 において採取された血清ならびに腸管抗体については、ELISA 法4,5）により S.E. 抗原に対する IgA, IgM ならびに IgG 抗体の産生を調べた。実験 4 において採取された脾臓リンパ球ならびに LPL については、抗 S.E. 抗体産生細胞の解析を行った。

また、実験 2 のグループ C において採取された腸管抗体については、HeLa 細胞への S.E. の吸着に対する阻害活性の有無についても調べた。

（5）脾臓リンパ球ならびに LPL の分離：脾臓リンパ球は、脾臓細胞浮遊液から Nycoprep（比重 1.077：Nycomed Pharma As, Oslo, Norway）を用いた比重遠心法により分離した。また、LPL については、既報6）の方法により分離した。

（6）Flow cytometry（FCM）による抗 S.E. 抗体産生細胞の解析：脾臓リンパ球あるいは LPL（106個）を 10% ウサギ血清と 10% ニワトリ血清でそれぞれ 30 分間ブロッキングを行い、ハンクス液（HBSS）で洗浄した後に、S.E. 抗原（不活化 S.E. 菌体：0.8mg/ml PBS）で 30 分反応させた。洗浄後、抗 S.E. ウサギ血清と 30 分反応させ、HBSS で洗浄した。その後、FITC−標識抗ウサギ Ig で 30 分反応させた。さらに細胞を HBSS で洗浄した後、Cyto ACE-150（日本分光）を用いて FCM 解析を行った。1 検体につき 10000 個の細胞を解析し、特異的抗体産生細胞の値から一次抗体もしくは二次抗体に対する非特異反応の値を差し引いたものを、抗 S.E. 抗体産生細胞（％）とした。

（7）抗 S.E. 抗体（腸管抗体）による HeLa 細胞への S.E. の吸着阻害試験：抗 S.E. 抗体による Hela 細胞への S.E. の吸着阻害試験については、既報7）の方法により行った。

3. 結果と考察

（1）ニワトリにおける抗原封入リポソームの免疫ルートの選定：我々は、DPPC, DPPS, Chol, モル比 1：1：2 からなるリポソーム（PS リポソーム）が、pH 2.0, 10% 水旭ならびに 2.8% パンクレアチン存在下でも安定であり、経口投与可能なリポソームであること、また、抗原封入 PS リポソームを経粘膜投与すると、粘膜局所の免疫系ならびに全身の免疫系良好に賦活性することができるにしている4,9）。そこで PS リポソームが、ニワトリにおける経粘膜ワクチンのキャリアとしてより有効性を示す免疫ルートを明らかにするために、不活化 S.E. 抗原を PS リポソームに封入し、経鼻、点眼、経口の各ルートで投与した後の血清中における免疫誘導について調べた。

血清中における抗 S.E. 抗体の誘導の結果を Fig. 1 に示す。いずれの免疫ルートにおいても非免疫でのアイソタイプにおいて高い免疫応答が誘導された（Fig. 1A-C）。これらの結果から、ニワトリにおいてリポソームを経粘膜ワクチンのキャリア
Fig. 1 Serum Ig responses in chickens immunized with liposome-associated *S. enteritidis* by various routes. Sera of chickens immunized intrareicularly (□), nasally (○) or orally (△) were titrated for IgA (A), IgG (B) or IgM (C) levels by ELISA. Date are expressed as mean±SD of three chickens.

*：p<0.05 compared to non-immunized control (××××).

Fig. 2 Detection of antibodies in intestinal mucous of chickens intraocularly immunized with differing doses of liposome-associated *S. enteritidis* with or without liposome. Extracted intestinal mucus (diluted two times) were titrated for IgA (A), IgG (B) and IgM (C) level by ELISA. Date are expressed as mean±SD of three chickens.

**: p<0.01 and *：p<0.05 compared to non-immunized control.
の誘導が認められなかったことから，局所免疫を誘導する上で抗原キャリアとしてのリポソームの有用性が明らかとなった。

（3）S.E.抗原に対する特異抗体産生細胞の検出：これまでの結果から，不活化S.E.抗原封入リポソーム（リポソーム型粘膜ワクチン）の点眼投与により，全身ならびに粘膜局所に効率良く抗S.E.抗体を誘導できることが示された。そこで，これらの抗体産生細胞を確認するため，リポソーム型粘膜ワクチンで2回免疫後，2週目にニワトリから，LPLならびに脾臓リンバ球を分離し，その中に含まれる抗体産生細胞をFCMにより解析した。Fig.3に示すように，非免疫のニワトリからのLPLならびに脾臓リンバ球においては，抗S.E.抗体産生細胞はほとんど検出されなかったにもかかわらず，免疫したニワトリからのLPLにおいては，免疫用不活化S.E.抗原に対し10.5±3.6％（全抗体産生細胞の約36％）のリンバ球が反応した。さらに脾臓リンバ球においては，免疫用不活化S.E.抗原に対し40.0±12.7％（全抗体産生細胞の約53％）のリンバ球が反応した。これらの結果から，リポソーム型粘膜ワクチンの点眼投与によって，全身（血中）ならびに粘膜局所（腸管内）に誘導される抗S.E.抗体は，脾臓（血中）リンバ球ならびに，LPLにより産生されていることが明らかとなった。

（4）S.E.腸管抗体によるHeLa細胞へのS.E.の吸着阻止効果：ニワトリからのS.E.を駆除することは，本菌のヒトへの感染を防ぐうえで大変重要なことである。そこで，腸管に誘導された抗S.E.抗体が，S.E.の細胞への吸着阻止に有効か否かを明らかにするために実験を行った。実験は，不活化S.E.抗原封入リポソーム（リポソーム型粘膜ワクチン）の点眼投与により，粘膜局所に誘導された抗S.E.抗体が，S.E.のHeLa細胞への吸着に対し阻止効果を示すかどうかを調べることにより行った。その結果，Fig.4に示すように，抗S.E.抗体（腸液）は，用量依存的にHeLa細胞へのS.E.の吸着を阻止し，最大81.5±7.5％（）の阻止率を示した。この結果は，リポソーム型粘膜ワクチンの点眼投与によって粘膜局所に誘導された抗S.E.抗体は，腸管上皮細胞へのS.E.の吸着阻止に有効であることを示唆している。

粘膜関連リンバ組織への抗原刺激によって腸管，呼吸器，泌尿生殖器などの粘膜組織や臓器，唾液腺，涙腺などの分泌腺に，分泌型IgA抗体の産生と分泌を誘導する機構の存在が明らかとなり，この機能を基盤として，粘膜感染症に対する粘膜ワクチンの研究開発が行われようになってきている8)。しかしながら，粘膜組織への抗原刺激には投与された抗原が，抗原性を失うことなく粘膜局所に到達し，粘膜から吸収され粘膜関連リンバ組織に移行し，抗原刺激することが前提となってい。ニワトリにおいては，鼻咽喉，気管支，腸
管などの粘膜関連リンパ組織以外に、眼球瞼膜内側の眼窩中隔側に位置するハードー腺（Harderian Gland；HG）も粘膜感染防御に関与する重要な免疫器官8.10として報告されている。そのため、ニワトリのサルモネラ感染症を防ぐための分泌型IgAを中心とした有効な粘膜免疫応答の誘導には、これらのルートを考慮した粘膜ワクチンの開発が重要になる。

腸管局所への有効な抗原提示法として、近年リポソームが注目されている11.12。今回我々は、すでに明らかにしてある結膜投与可能なリポソーム（PSリポソーム）4.5を、腸サルモネラ症の予防のための粘膜ワクチンとして応用するために、PSリポソームの結膜、点眼、結膜の各ルートで投与した後の免疫応答について調べた。さらに、粘膜局所に誘導された免疫応答がS.E.の感染防止に有効できるかどうかについて明らかにするために、PSリポソームの点眼投与により腸管に誘導された抗S.E.抗体がHeLa細胞へのS.E.の吸着阻止に有効か否かについても検討した。

本研究において、PSリポソームに不活化S.E.抗原を封入し、経鼻、点眼、結膜の各ルートで投与した場合、いずれのルートでも不活化S.E.抗原に対する抗体（IgA、IgG、IgM抗体）が血清中に誘導された（Fig. 1）。しかしながら、点眼ルートで投与した場合（グループ B）、結膜（グループ A）と結膜（グループ C）の各ルートで投与した場合に比べ、不活化S.E.抗原に対する血清抗体はIgA、IgG、IgMすべてのアイソタイプにおいて高い免疫応答が誘導された（Fig. 1A-C）。これらの結果は、ニワトリにおいては、結膜粘膜ルートの中で、点眼投与が点鼻、結膜の各ルートよりも全身の液性免疫を誘導するうえで優れていることを示唆している。その理由として、眼球瞼膜内側の眼窩中隔側に位置するニワトリHGの実質内には多数のプラズマ細胞の存在13が報告されており、抗原提示細胞としての役割を担っていることによるものと思われる。さらに、HGの局所免疫応答について、HGの外側的切除により特異抗体価の減少、感染防御能の低下9.10が報告されていることから、ニワトリにおける、HGの抗原認識器官としての重要性も示唆してい

Fig. 4 Inhibition of adherence of S. enteritidis to HeLa cells by specific antibodies secreted in intestine. The total number of bacteria adhered/20 cells (●●●●) and percentage of adherence inhibition (○○○○) are expressed as mean±SD of three experiments.
るものと思われる。

粘膜関連リンパ組織への抗原刺激によって、全身ならびに全身の粘膜に免疫を誘導できることが明らかとなっている8。本研究において、PSリポソームに不活化S.E.抗原を封入し点眼免疫した場合、1mg以上の抗原量で血清中に同様に、腸管においてもIgA、IgG、IgMすべてのアイロタイプの抗S.E.抗体が有意に誘導された（Fig.2）。特に、IgA抗体は、他のアイロタイプに比べ少ない抗原量で誘導された。経粘膜的に抗原を投与した場合、粘膜局所において産生される抗体は、IgA型抗体が優位になることが報告されている14、15。今回、PSリポソームに不活化S.E.抗原を封し点眼投与した場合、腸管において産生された優位な抗体がIgA抗体であった理由は、この事実によるものと思われる。また、不活化S.E.抗原のみを点眼免疫した場合、2mgの抗原量でも腸管にIgA抗体の有意な産生を認めなかったが、リポソームに封入した場合、1mgの抗原量で腸管に優位なIgA抗体が誘導された（Fig.2A）。リポソームは、主に粘膜アジュバントとしての活性を示すことが明らかとなっている16。今回、抗原をリポソーム内に封入し、投与して認められた高い粘膜免疫の誘導は、リポソームのアジュバント効果によるものと思われる。

不活化S.E.抗原封入リポソームの点眼投与により、全身ならびに腸管局所に誘導された抗体会、脾臓リンパ球ならびにLPLで産生されていることが、FCM解析により明らかとなった（Fig.3）。この結果は、全身に誘導された抗体会は脾臓において、腸管局所に誘導された抗体会は腸管粘膜局所において産生されていることを示唆している。さらに、不活化S.E.抗原封入リポソームの点眼投与により、腸管に誘導された抗S.E.抗体が、用量依存的にHeLa細胞へのS.E.の吸着を阻止した（Fig.4）。この結果は、腸管に誘導された抗S.E.抗体が、S.E.の腸管上皮細胞への吸着阻止に有効であることを示唆している。

最後に、PSリポソームを応用した粘膜ワクチンは、全身ならびに腸管局所に効率よく粘液免疫を誘導でき、ニワトリからのS.E.の排除に有用であることが示された。ワクチンを作製するうえで、必要最小限の抗原を用いることは経済的かつ効率的である。リポソームを応用することにより、最小限の抗原で免疫誘導を可能にするために、今後、ニワトリの粘膜アジュバントとして最適なものを見つけるにPSリポソームのさらなる最適化をはかることによりリポソームに組み込んだ抗原の免疫原性をさらに高め、ニワトリにおけるサルモネラ症に効果的な粘膜ワクチンの開発につなげて行きたい。

4. 要 約

DPPC, DPPS, Chol, モル比1:1:2からなるリポソーム（PSリポソーム）を、鶏サルモネラ症の予防のための粘膜ワクチンとして応用し、病原体の感染阻止に有効な免疫応答を効率よく誘導できる免疫方法の開発ならびにそれにに基づいた病原体を持たない卵肉の生産を目指した基礎的研究所行った。

PSリポソームに不活化S.E.抗原を封し、経鼻、点眼、経口の各ルートで投与した後の血清中の抗体産生について調べた。その結果、いずれのルートでも不活化S.E.抗原に対する抗体（IgA, IgG, IgM抗体）が血清中に誘導された。しかしながら、点眼ルートで投与した場合、経鼻、経口の各ルートで投与した場合に比べ、不活化S.E.抗原に対する血清抗体はIgA, IgG, IgMすべてのアイロタイプにおいて高い免疫応答が誘導された。また、点眼ルートでの投与は、腸管においてもすべてのアイロタイプの抗S.E.抗体を有意に誘導した。特に、IgA抗体は、他のアイロタイプ
リポソーム型粘膜ワクチンによる鰾サルモネラ症（鰾バラチフス）の予防

文献

2) 中村明子, 食品衛生研究, 46, 61-71, 1996.
肥育 F1子牛への生菌製剤投与による増体および
糞便中コウシジムオーシスト数への影響

Effect of Supplementation of Probiotics to F1 Calves on the Body Weight Gain and Oocysts per Gram of Coccidium in Feces

牧 村 進（宮崎大学農学部）

Susumu Makimura (Faculty of Agriculture, Miyazaki University)

Effect of administration of probiotics to F1 calves on the body weight gain and oocysts per gram of coccidium in feces were examined. Twelve kinds of microbes consisted of *Bacillus* spp., *Lactobacillus* spp., *Streptococcus* spp., *Saccharomyces* spp. and *Candida* spp. were used as probiotics. Seven young calves from 1 week to 3 weeks old were supplemented with probiotics and another seven calves (control) were not supplemented with probiotics. The exams were done two times. Mean body weight of probiotics-supplemented calves increased more than control from 4 weeks after the beginning of the exam until the end. Daily gains of probiotics-supplemented group were greater than control. More calves that showed delayed growth were found in the group which was not supplemented with probiotics. More calves which showed high OPG (more than 500) were found in the group which was not supplemented with probiotics (in the 1st experiment). Fewer calves that showed an increase in γ-globulin values from the beginning to the end of the second experiment compared mean values were found in control than that of group that supplemented with probiotics. Moreover, these calves that showed an increase in γ-globulin values were coincident with calves that showed more body weight gain than mean values.

1. 目的

抗生物質が家畜の感染症予防と発育促進のため広く用いられてきたが、抗生物質の乱用は、耐性菌の出現という重大な結果をもたらし、さらに畜産物への抗菌質の残留も問題になっている。かわって、近年、生菌製剤投与が多くなる研究者の興味を呼んできた。すなわち、*Lactobacillus acidophilus, Staphilococcus faecalis, および他の乳酸菌群が生菌製剤として家畜に試みられてきた*5, 6)。柳谷ら8) は *Lactobacillus acidophilus, Enterococcus faecium, Saccharomyces cerevisiae* を放牧育成牛に増体に有効であることを報告している。阿部ら9) は Bifidobacteria および Lactic acid Bacteria の子牛および子豚への投与が増体および下痢の発症予防に効果があったと報告している。さらに、生菌製剤を投与により、ブロイラーゲートに高いパタンと同じ感応の抑制9) および子牛の腸内大腸菌 O157の減少9) などが報告されている。実際、生菌製剤の使用が多くなる肉牛生産農家で試みられている。生菌製剤の使用によって、子牛の下痢の減少、成長促進、肥育中期から後期にかけてのくい止めの減少および糞便の悪臭減少と堆肥化の促進など種々の効果が経験
2. 方 法

2.1 供試牛

宮崎県東諸県郡緑町の某肥育農場に導入された生後1ヶ月齢以下の子牛（F1去精雄）14頭を導入直後に全頭の健康状態のチェック、体重測定および糞便検査を行った。体重の重い順から交互に2群に班別し、一方を生菌製剤投与群7頭（No.1〜No.7）、他方を非投与群7頭（No.8〜No.14）に分けた。供試牛は導入時に牛5種混合生ワクチン（ウシ伝染性鼻気管炎、ウシウィルス性下痢・粘膜病、バラインフルエンザ、ウシRSウィルス病、ウシアデノウィルス病）投与が行われた。また試験開始最初の3日間抗コクシジウム剤（サルファ剤）を投与し、さらに2ヶ月後に再投与した。

2.2 供試牛の飼養条件と試験期間

試験牛への飼料の投与は農場の肥育計画に沿って行い、粗飼料（飼育期にはパミューダヘイなど、肥育期には良質乾草、市販配合飼料、飼育期にはサックル、カーフスターターなど、肥育前期には宮崎特号を投与した。第1回目の試験期間は4月28日〜9月1日（18週間）、第2回目の試験期間は9月30日〜12月25日（12週間）に行われた。

2.3 使用生菌製剤

生菌製剤として、商品名アースジェネター（アース技研、帯広市）を使用し、1日1回1頭当たり5gを経口投与した。本生菌製剤は12種の細菌（Bacillus subtilis, Bacillus natto, Bacillus megaterium, Lactobacillus acidophilus, lactobacillus plantarum, Lactobacillus casei, Lactobacillus brevis, Streptococcus faecalis, Streptococcus lactis, Streptococcus thermophilus, Saccharomyces cerevisia, Candida utilis）が脱脂米こうじに10^{7}CFU/gの割合で固着させた製剤である。

2.4 検査

健康状態の観察は、毎日、飼育者による生菌製剤投与群、非投与群の健康状態を視覚的に観察するとともに、糞便採取時にも健康状態をチェックした。

（1）体重測定：1回目の試験では試験開始日（4, 8, 12, 18週間後）、2回目の試験では試験開始日（4, 8, 12週間後）に体重計にて行った。

（2）糞便採取とコクシジウム虫卵検査

糞便は直腸検査用採手で直腸便を採取した。1回目の試験では子牛導入の翌日（試験開始日とする）と以後2週間ごとに12週目まで6回と18週目に、また2回目の試験では、子牛導入1週間後（試験開始日とする）、4週間後、8週間後、12週間後に採取し、糞便の状態を記録し、採取した便はクーラーボックスに入れ研究室に持ち帰り、その日のうちに糞便検査を行った。検査はウィンスコンシン変法にてコクシジウムオーエストのOPGを計測した。

（3）血液採取と血清タンパク電気泳動：1回目の試験において、試験開始日（8週間後に経脈より真空採血管で採血し、血清分離後、総タパ
ク量およびセルロースアセテート膜気泡泳動法によりAG比、血清タンパク分画を算出した。

3. 結果と考察

今回、バチラス属、ラクトバチラス属、ストレプトコック属、サッカロマイセス属、カンジダ属からなる12種菌群を生菌製剤（プロバイオテックス）として用いたが、F1子牛の導入後の平均体重は第1回、第2回目のいずれの試験においても、生菌製剤投与群の方が非投与群に比較して試験開始4週目から大きい傾向を示し、試験終了時においてその差は顕著になった（Fig.1. A, B）。また個々の試験最終時における増体重をプロットし、平均増体重と比較した（Fig.1. C, D）。試験最終時において、生菌製剤を投与していない群に平均増体重を下回る個体が多く、一方、生菌製剤投与群では平均増体重を下回る個体数が少なかった。さらに、平均日増体重量 dairy gain (kg/day) は1回、2回目とも生菌製剤投与群の方が非投与群より高い傾向を示した（Fig.2）。生菌製剤投与群の方が平均体重、平均日増体重量が非投与群に比較して統計学的に有意差はなくものも大きかった。その原因として、非投与群では試験最終時における増体重が平均増体重を下回った個体が第1回試験では6頭中4頭、第2回目の試験では7頭中4頭と発育遅れを示す個体の割合が多かったことに示されるように非投与群に増体重のよくな個体の割合が多かったことに起因すると考えられる。

今回の第1回目の試験で生菌製剤非投与群では、4～5週にかけてOPG 500を越えるものが7頭中3頭みられ、投与群ではOPG 500 を越えるものはみられなかった（Fig.3）。しかも、その非投与群でOPG 500 を越えた3頭は平均増体重を下
Fig. 2 Comparison of mean daily gain (DG) of body weight between in groups supplemented with and without probiotics of the first and second experiment.

回る個体に一致した（Data not shown）。生菌製剤投与によって腸管内寄住性大腸菌やサルモネラ菌の菌数が減少するという報告はあるが、コクシジウム OPG が減少するという報告はない。しかし、Alak ら31）はマウスへの生菌製剤投与によって Cryptosporidium parvum のオーシストの数を減らすことを報告し、これら生菌製剤が腸管内寄生虫感染に対する抵抗性獲得に有効なことを指摘している。コクシジウム感染に対する宿主の防御免疫は腸管局所免疫が関与していることが知られているが、生菌製剤投与が寄生虫に対する腸管内の局所免疫の促進になんらかの効果を有しているのかもしれない。

第 2 回目の試験開始時から試験終了時までの γ グロブリン値の上昇率が γ グロブリン上昇率の平均値以上を示した個体は生菌製剤非投与群で少なく、生菌製剤投与群では平均値以下であり、しかもこれ γ グロブリン値の上昇率平均値以下の個体は両群の平均最終増体を下回った個体と一致した（Fig. 4）。これらのことは、必ずしも飼育環境がよくない環境下では腸管または呼吸器への何らかの感染が起こったことそして生菌製剤投与によってそれら感染が予防され、結果として増体の落ち込みを防止したことが示唆された。

Fig. 3 Changes of oocysts per gram (OPG) of coccidium in fecal of cattle supplemented with (A) and without (B) probiotics in the first experiment.
4. 要約

バチラス属、ラクトバチラス属、ストレプトコッカス属、サッカロマイセス属、カンジタ属からなる12種菌群で構成される生菌製造液を飼料添加物として導入肥育F1子牛に投与したときの体重増および糞便中コクシジウムオーシスト数（OPG）への影響について検討した。試験は宮崎県某肉牛肥育農場に導入された生後約1週から3週齢のF1子牛を用い、生菌製造液投与群、非投与群それぞれ7頭ずつ分け、2回行った。導入直後から18週目まで増体量、OPGおよび血清タンパク分画値を測定した。平均体重および平均毎日増体重dairy gain (kg/day)は第1回、第2回目のいずれの試験においても、生菌製造液群の方が非投与群に比較して大きな傾向を示した。さらに、非投与群では試験終時における増体量が平均増体重量を下回った個体が第1回目試験では6頭中4頭、第2回目の試験では7頭中4頭と発育遅延を示す個体の割合が多かった。第1回目の試験で生菌製造液非投与群では非投与群に比較しOPGが多い（500以上）個体の割合が多く見られた。また、第2回目の試験開始時から試験終了時のまでのγグロブリン値の上昇率がγグロブリン上昇率の平均値以上を示した個体は生菌製造液投与群が多く見られ、しかもこれからγグロブリン値の上昇率が平均値以上の個体は両群の平均最終増体重を下回った個体と一致した。

文献
The eradication of Shiga toxin-producing Escherichia coli (STEC) in cattle by combined method of an antibiotic and a probiotics was examined in a farm breeding Japanese Black beef cattle where most of cattle were infected with STEC. Consequently, STEC was almost eliminated from calves in 5 days of treatment with bicozamycin (BCM), and the diarrheal calves also recovered in the antibiotic medication. On the other hand, although the remarkable effect could not be recognized for 2 months, STEC in calf was decreased in number in 3- and 4-month after medication with the probiotics (BT and/or EG). Furthermore, a death of calf obviously decreased in number by feed with the probiotics for one year. From the above results, BCM was suggested for useful as a curative medicine for a diarrhea associated with STEC. On the other hand, a BT- and/or EG-long continuative medication decreases the death of calf, and was also suggested that it is useful in respect of STEC exclusion from not only cattle but the farm.

1. 目 的

腸管出血性大腸菌 O157：H7（大腸菌 O157）による死亡者を伴う集団食中毒事故が国内外において発生している。それらの飲食物の汚染源として牛が重要視されており、大腸菌 O157 健康保菌牛の存在が明らかになっている。さらに、牛に存在する O157 以外の血清型の志賀毒素産生性大腸菌（STEC）もヒトに対して病原性のあることが明らかとなった。そこで、この課題では、肉用牛生産農場における大腸菌 O157等の STEC の清浄化を目的として、STEC の高度汚染が確認された農場において抗菌生物および生菌製剤の併用による牛体からの STEC 排除を試みた。

2. 材料および方法

（1）農場飼養牛の STEC 保菌調査：子牛59頭の STEC 保菌調査を実施した。調査方法は昨年度の当該報告書に従った。

（2）抗菌生物（BCM）による STEC 排除試験：STEC 保菌牛30頭（投薬群15頭、非投薬群15頭）について BCM による STEC 排除試験を実施した。投薬群には BCM（10mg/kg/日）を5日間連続強制経口投与した。

（3）BCM 投薬終了直後からの生菌製剤給与試験：BCM 投与終了1日後から、1農場の飼養牛全頭（110頭）に対して BT の飼料添加（50〜100g/頭/日）給与を開始した。その中で、BCM
投薬群の4〜10頭について、生菌製剤添加開始2週、1、2、3および4カ月後のSTECの動態を個体別に追跡調査した。

（4）BCM投薬前からの生菌製剤給与試験：BCM投与3カ月前から、2農場の飼養牛5頭（200頭）に対してEGの飼料添加（5g/頭/日）給与を開始した。その中で、BCM投薬群の5〜10頭について、BCM投与終了2週、1、2、3および4カ月後のSTECの動態を個体別に追跡調査した。

（5）農場飼養子牛のSTEC再保菌調査：STEC排除試験4カ月後までのSTEC動態の個体別追跡調査後もBTあるいはEG給与を継続し、STEC排除試験1年後に無作為に抽出した子牛30頭についてSTEC再保菌調査を検査した。

（6）子牛の死亡事故の調査：STEC排除試験開始の前1年間と後1年間における農場の子牛の死亡事故件数およびそれらの死亡子牛のSTEC保菌率について調査した。

3. 結果と考察

（1）農場飼養子牛のSTEC保菌調査では、48/59頭（81.4%）の子牛がSTECを保菌しており、当該農場はSTECに高度汚染していることが明らかとなった。

Fig. 1 Effect of BCM on the eradication of STEC from calves

Fig. 2 Effect of BCM and the probiotics on the eradication of STEC from calves
Fig. 3 Rate of diarrheal calf after the administration with probiotics

に 4.99±1.28 (n=8)，1 カ月後 4.96±2.04 (n=8)，2 カ月後 3.63±2.86 (n=8)，3 カ月後 0.00 ±0.00 (n=6) および 4 カ月後 0.60±1.35 (n=6) であった（Fig. 2）。また、下痢を呈する牛個体数は、2 週間後 (2/8頭：25%)，1 カ月後 (1/8頭：12.5%)，2 カ月後 (1/8頭：12.5%)，3 カ月後 (0/6頭：0%) および 4 カ月後 (1/6頭：16.7%) であった（Fig. 3）。BT 紙給与開始 2 週間後から STEC の保菌数が減少し始め，3 および 4 カ月後著明に減少した。

（4）BCM 投薬前のもの EG 紙給与試験において，同一個体追跡 STEC 保菌調査を行った。STEC 数 (log₆CFU/g) は，BCM 投薬前 4.16±0.75 (n=10)，投薬終了 1 日後 0.00±0.00 (n=5)，BCM 投薬終了 2 週間後 4.50±1.87 (n=10)，1 カ月後 4.81±1.85 (n=9)，2 カ月後 4.68±2.19 (n=7)，3 カ月後 2.48±2.29 (n=7) および 4 カ月後 0.78±1.92 (n=7) であった（Fig. 2）。また，下痢を呈する牛個体数は，2 週間後 (3/10 頭：30%)，1 カ月後 (4/9頭 44.4%)，2 カ月後 (0/7頭：0%)，3 カ月後 (0/7頭：0%) および 4 カ月後 (0/7頭：0%) であった（Fig. 3）。EG 紙給与しながら BCM 投与をしたにもかかわらず，BCM 投薬終了後 STEC の牛体内への定着の復帰が認められた。その後，給与開始 3 より 4 カ月後では著明に STEC の保菌数が減少し，下痢の改善が 2 カ月後から著明に認められた。

（5）農場飼養子牛の STEC 排除試験 1 年後の STEC 再保菌調査では，4/30頭 (13.3%) から STEC が検出された。（1）および（5）の成績から，STEC 排除試験前後では，STEC 保菌が 48/59頭 (81.4%) から4/30頭 (13.3%) に改善されたことが明らかとなった（Fig. 4）。

（6）STEC 排除試験開始前の 1 年間と後 1 年間における農場の子牛の死亡事故件数について調査したところ，試験開始前 1 年間に 21 頭の子牛が死亡し，その中の 16 頭が腸炎で死亡した。それに対しても，STEC 排除試験開始後 1 年間で死亡事故が 13 頭となり，その中の腸炎での死亡は 7 頭であった（Fig. 5）。以上の成績から，BT あるいは EG の継続給与で腸炎関連の子牛の死亡事故が激減していることが明らかとなった。

以上の成績から，BCM および BT・EG の併

Fig. 4 Comparison of the rate of STEC-positive calf between pre-and post-exam
Fig. 5 Comparison of the number of died calf between pre-and post-exam

用では STEC 排除に関して著効は認められなかったが、BCM は短期間に個体から STEC を排除し、下痢の治療に有用であることが示唆された。BCM はマウス感染モデルを用いた大腸菌 O157 除菌試験において、菌数が減少し、志賀毒素産生がほとんど認められないことから、家畜の STEC 感染症の治療および定着菌の除菌への有用性が期待されている21。また、農場飼養牛への BT あるいは EG の飼料添加長期継続投与が、STEC 排除および子牛の死亡事故防止に有用であることが示唆された。BT はウサギ感染モデルを用いた大腸菌 O157 定着抑制試験において、その有効性が示唆されている22。4. 要 約

STEC の高度汚染が確認された黒毛和種生産農場において、抗生物質および生菌製剤併用で保菌子牛からの STEC 排除試験を試みた。その結果、抗生物質 (BCM) 投与試験では、5 日間の連続投与で保菌子牛から STEC がほとんど排除され、下痢発症牛の頭数も減少した。一方、生菌製剤 (BT あるいは EG) の飼料添加投与試験では、投薬開始 2 週間、1 か月、2 か月間で著効は認められなかったが、3 か月後および 4 か月後で STEC 保菌数の減少が認められた。また、生菌製剤投与前後 1 年間の STEC 保菌数および子牛の死亡事故を調査したところ、STEC 保菌数および死亡頭数の著明な減少が認められた。

以上の成績から、BCM は STEC の関与する下痢発症牛の治療薬として、その有用性が示唆された。一方、BT あるいは EG の中長期の継続給与は子牛の死亡事故を減少させ、農場全体の STEC 排除の面で有用であると示唆された。

文献
1）中澤宗生，鰤島俊哉，秋庭正人，末吉益雄，獣医畜産新報，50，655-658，1997。
2）末吉益雄，食肉に関する助成研究調査成果報告書，18，97-101，2000。
3）松本佳巳，日本細菌学雑誌，54，104，1999。
4）立川高裕，瀬尾元一郎，中澤宗生，末吉益雄，大石勉，城宏輔，感染症学雑誌，72，1300-1305，1998。
Dietary Control of Verotoxin-producing *Escherichia coli* in Digestive Tracts of Animals

Yasuo Kobayashi (Graduate School of Agriculture, Hokkaido University)

Fecal DNA was isolated from 22 milking cows and employed as a template for PCR detection of the verotoxin-producing *E. coli* (VTEC). Twelve of the 22 cows were positive for general *E. coli* in the PCR detection targeting to 16S rDNA. These 12 cows were used for VTEC detection by normal PCR targeted for verotoxin genes, though none of the 12 cows were VTEC-positive. More sensitive detection using PCR plus Southern analysis revealed that 6 of the 12 cows were VTEC-positive. Furthermore, the detection by a nested PCR demonstrated that all of the 12 cows were VTEC-positive. The six positive cows screened by the PCR plus Southern analysis were chosen for the further investigation on responses of fecal VTEC to a diet change. One of the 6 cows became VTEC-negative after the diet change from a 70% roughage diet (in milking period) to a 90% roughage diet (in drying period). These cows are still being investigated by periodic sampling.

1. 目的

O157に代表されるベロ毒素産生性大腸菌（VTEC）を大腸内に保有する家畜では、と体処理の過程で食肉汚染のリスクをはらんでいることが指摘されている。実際に各国で本菌群による集団中毒発生し、リスク低減の方策が主に食肉処理経由および流過経路の改善といったプロトハーベストの段階に取り入れられている。当初VTEC保有家畜は極めてまれなものという認識しかなかったが、その後の調査により、ウシでは5〜40%の個体が保菌していること、またわれわれの研究を含め、野生反芻動物でも保菌が確認されていることから、本菌群の分布はかなり広いことが明らかになっている1）。従来のリスク低減法として注目すべきながら、験養法を工夫することで腸管内のVTEC分布密度をあらかじめ減らし、と殺前にも腐敗リスクを低減する方法である。これは「畜育牛を粗飼料で飼い直すことで酸耐性大腸菌数が100万分の1減少する」という米国の観察2）ともとづく戦略である。しかし、その後の追試で同じ現象が確認できないことや、まったく逆の結果が得られている例3）もあり、VTEC低減策として採用するには慎重になる必要がある。一方で、「絶食処理がVTECを含む大腸菌の増殖を抑制する」ことが見出され4）5）、「濃厚飼料多給による仕上げ肥育、出荷前の絶食」がと畜の辺り一般のプロセスである日本では、VTEC汚染リスクを無意識に高めている可能性すらみえてきた。

本研究では、これらの要因に焦点をしばり、ま
ずウシ新鮮糞サンプルを高感度 VTEC 検出法で
検査することで複数の保菌動物を特定し、これら
の個体の糞への VTEC 排泄パターンを精査する
ことで、飼養学的観点からの汚染予防策作成へむ
けての基礎情報を得ることを目的とした。

2. 方 法

2.1 試験牛、サンプル採取と DNA 抽出
A 農場所有のウシ（泌乳牛）22頭の直腸から新
鮮糞を採取後、混合し代表サンプルを得た。サン
プルは－80℃で保存した。これらのウシは基本的
に濃縮飼料と粗飼料（グラスおよびコーンサイレ
ージ）で飼われており、粗飼料：濃縮飼料比は約
7：3 であった。乾乳後はコーンサイレージは給
与せず、また濃縮飼料給与量も極めてわずかとな
り、同比は約 9：1 であった。
先の検討結果をもとづき、採取した糞より
DNA を抽出・精製した。すなわち、糞をビーズ
破砕後抽出したものをヒドロキシアバサイトカラ
ム（Bio-Gel HTP Gel, BIORAD）精製し、ゲル
ろ過カラム（Microspin S-200 HR Columns,
Pharmacia Biotech）で精製する方法で PCR 用
テンプレートを得た。DNA は蛍光定量した。

2.2 高感度検出による保菌牛の特定
まず大腸菌 16S rDNA（1,542bp）の一部の領
域（452nd -1,035th）を標的とした PCR 検出
（584bp）を行った。プライマー配列や PCR 反応
条件は既報のとおりとした。次に、大腸菌で増
幅が見られたサンプルについてのみ、ベロ毒素遺
伝子（1,242bp）（VT1，VT2 と VT3 の変異型で
ある VT2vha, VT2vhb, VT2vpl）の一部の領
域（395th–565th）を標的とした PCR 検出（Ta-
kara O-157 PCR Screening Set）（171bp）を行
った。PCR 反応条件はキット付属のプロトコル
に従った。ペロ毒素遺伝子の高感度検出として、
上の PCR 物を電気泳動後、サザン分析に供した。

Fig. 1 Primers used for detection of verotoxin-producing E. coli (VTEC) by nested PCR
消化管内に生息するペロ毒素産生性大腸菌の飼育的動態コントロール

その際のDNAプローブには前試験1)で単離したカモシカ糞由来のVT2部分配列（171bp）をアルカリフォスファターゼで直接標識したもの（Alkaline Phosphatase direct labelling and detection kit, Promega Biotech）を用いた。さらに高感度検出をはかるため、VT2部分配列の内側でプライマーセットをもうけ、Nested PCR系を作成した（Fig. 1）。

3. 結果と考察

まず、大腸菌16S rDNAを標的としたPCR検出を行ったところ、22頭のうち12頭で増幅がみられた。この割合は先の報告1)のそれ（肉牛20頭中11頭、カモシカ17頭中10頭）と近似していた。

さらに、この大腸菌PCR検出で陽性だった12サンプルについて、ペロ毒素遺伝子を標的としたVT2のPCR検出を行った。高感度検出法での結果とあわせてTable 1に示す。VT2はすべてのウシで通常のPCRでは検出されなかった。しかしながらサザン法との組み合わせでは12頭中6頭が陽性と判断され、VT2部分配列から調整したDNAプローブは予想される分子サイズで明確なハイプリダイゼーションを示した。さらにNested PCR法では12頭中12頭で予想分子サイズと一致する増幅バンドが認められ、これらはすべてVT2陽性と判断された。

今回採用した検出法のうち最も感度の低い通常のPCRでは、おそらく10⁻⁸～10⁻⁹/g程度のVT2を検出可能と推察される。感度の高いサザン法との組み合わせでは10⁻⁴～10⁻⁵/g程度、もっとも感度の高いNested PCR法では10⁻⁶/g以下のVT2が検出される可能性が高い。VT2の消化管内での大幅な低減化、もしくは根絶をはかる場合、このような高感度でかつ安全な検出方法は必須であり、今後の応用が期待される。

実際の飼養条件がこれら低密度で消化管に生息するVT2にどのような影響を与えるかは興味のもたれるところである。上記の保菌牛のうち比較的VT2密度が高いと思われるものの、すなわちサザン法との組み合わせで検出された個体に焦点をあてた調査を続続している。これら6頭のうち、現在も飼養中の牛5頭について、追跡調査を行ったところ、うち1頭が乾乳期の粗飼料割合が極めて高い飼養条件下で、陰性に転換した。泌乳期で当初陽性が確認されたこれら個体について、詳細な調査を現在継続中である。

反芻動物への給与飼料や食餌性ストレスが、消化管管細菌叢に影響を及ぼすことはよく知られている。数週間給与で乾草や牧草を給与した時に比べ、大腸内におけるVFA濃度が上昇し、pHが減少し、総大腸菌数および酸耐性大腸菌数が著しい増加をみせるが、その後給与飼料を乾草主体に変

Table 1 Detection of verotoxin-producing E. coli (VTEC) by 3 methods with different sensitivity

<table>
<thead>
<tr>
<th>Methods</th>
<th>Amplified DNA or hybridization signal</th>
<th>VTEC positives</th>
<th>VTEC positives/ E. coli positives</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal PCR</td>
<td></td>
<td>171bp</td>
<td>0/12</td>
</tr>
<tr>
<td>PCR + Southern</td>
<td></td>
<td>171bp</td>
<td>6/12</td>
</tr>
<tr>
<td>Nested PCR</td>
<td></td>
<td>171bp</td>
<td>12/12</td>
</tr>
</tbody>
</table>
えると、まったく逆の動向があらわれることがある。つまり乾草を給与することで餌便の大腸菌数を減少させ、これが食肉汚染のリスク低減につながるのであから述べている。本研究でも乳児中で陽性であったものの中の1頭が乾乳期に陰性に変化していることから、粗飼料多給による低減効果がうかがわれる。しかし未だ極めて例数が少ないことや、その後の推移を見ていなかったため、慎重になる必要がある。ただしどのような情報も病原性大腸菌の新しい制御法を示唆するものであり、注目すべきである。一方で、O157は乾草給与で増える傾向にあるというまったく逆の報告もされており、統一見解は得ていない。

絶食牛から採取したルーメン液では、大腸菌（O157も含む）が無制限といえるほど増殖したとの報告がある。これは絶食に伴うルーメン内のpHの上昇やVFA濃度の低下に由来するとされている。中澤らは試験的に3TECを投与した牛を絶食させた場合、飼便中のVTECおよび総大腸菌の菌数が明らかに増加したこと報告しており、絶食の菌数に対する促進的影響を強調している。国内の肥育牛はと殺前に絶食にさらされるため、これが実際なら大きな問題である。一方で、絶食によりVFAの濃度減少とpH増加は認められたものの、ルーメンや飼便中における大腸菌O157：H7の数の増減に関連しないという報告もある。

乳肉牛の生産性向上のため、穀類多給は常識的となっているが、粗飼料主体の飼養法で、食肉汚染の危険性を低下させることができるのであれば飼い方の根本的見直しが必要である。その際、生産性を大幅に低下させないような粗飼料給与体系を視野に置いて組む必要があるのは言うまでもない。現在、絶密な個体管理の可能な乳牛を用いて、VTEC保菌個体の追跡調査を継続しており、これらからの基礎データを応用して、飼養学的側面からのリスク低減をはかりたいと思っている。

4. 要約

ウシ（泌乳牛）22頭の新鮮糞からDNAを抽出、精製し、PCRとサザン分析法、加えてNested PCR法を用いてペロ毒素産生性大腸菌（VTEC）の高感度検出を試み、保菌牛を特定した。まず、大腸菌16SrDNAを標的としたPCR検出を行ったところ、22頭のうち12頭で増幅がみられた。さらに、この大腸菌PCR検出で陽性だった12サンプルについて、ペロ毒素遺伝子を標的としたVTECのPCR検出を行った。VTECはすべてのウシでPCR検出されなかったが、サザン法との組み合わせにより12頭中6頭で、また Nested PCR法では12頭中12頭で陽性と判断した。これからのうち比較的VTEC密度が高いと思われる、現在も飼養中の牛5頭について、追跡調査を行ったところ、うち1頭が乾乳期の粗飼料割合が極めて高い飼養条件下で、陰性に転換した。泌乳期で陽性が確認された全個体について調査継続中である。

文献
1) 小林泰男，食肉に関する助成研究調査成果報告書，18:91-96，2000。
4) 中澤宗生，山崎順正，土橋宏司，矢口和彦，宮沢博，久保正法，播谷亮，秋津正人，鰐島俊哉，畜産研究所の研究，53：1198-1202，1999。
イヌ・ネコの疾患と血漿中の微量元素に関する研究

The Relationship between Plasma Trace Elements Values and Diseases of Dog and Cat

政岡 俊夫 • 宮地 俊輔 • 沈 明浩 • *嶋田 英作 • 印牧 信行
小方 宗次 • 福岡 秀雄
（麻布大学獣医学部，*環境保健学部）

Toshio Masaoka, Syunsuke Miyachi, Ming-Hao Shen, *Eisaku Shimada, Nobuyuki Kanemaki, Munetsugu Ogata and Hideo Fukuoka
（School of Veterinary Medicine and *College of Environmental Health, Azabu University）

We researched a relationships between several trace elements (cobalt, chromium, copper, manganese, molybdenum, selenium, zinc) in plasma and dog’s disease, using Inductively Coupled Plasma Mass Spectrometer (ICP-MS: Perkin Elmer Co. Ltd., Elan 6000) method.

The 43 samples of 18 dog’s pedigree were obtained from optic patients. As for two Cavalier King Charles Spaniel, the concentrations of Mn and Co in plasma were higher level than other dog’s pedigree. However, we don’t find that there are the relationships between the concentrations of trace elements in plasma and the optic patients of dog.

1. 目 的

生体にとって必要とされている微量および超微量元素は、分かっているだけでも20数種以上あり、酵素活性や生体機能維持に重要な役割を演じている。これらの元素は生体内で相互に影響を及ぼし、生体機能に変化をもたらし、また、元素の過・不足により各種の疾患が引き起こされることも知られている1,2。獣医学の分野では微量元素と疾病の関係は、古くから家畜を中心に多くの研究報告があるものの小動物臨床分野では少ないのが現状である。これは家畜に比較して栄養学の分野で小動物の栄養に関する関心が少なかったことや、動物の寿命が短く微量元素による慢性的な影響の出現が比較的少なかったことに要因があると思われる。

しかし近年、小動物の栄養学に関する研究の発展は目覚ましく、市販の飼料も高品質の物が多くなり、動物の寿命も延びる傾向が認められ、それと平行して神経性疾患や老齢性疾患および慢性疾患が増加しそつある。これらの疾病に微量元素がどのように関わっているかを追究した研究は少ない。また、イヌやネコなどのコンパニオン・アニマルはヒトと同じ生活環境下で飼育されることで同じ食事を与えられている個体もあり、将来これらの動物はヒトにおける元素と疾病の関連を研究するうえにおいてモデル動物となり得ると考えている。そこで本研究では、まず本学獣医臨床センター（附属動物病院）に眼科疾患の治療目的で来院したイヌを対象に、血漿中微量元素とそれ
3. 結果と考察

今回の研究に用いたイヌの種別と性別、年齢および診察時の疾病名を表1に示した。当大学附属動物病院の眼科に治療目的で来院したイヌ43頭の種類は、雑種も含めて18種、年齢は1〜18歳であった。疾病はいずれの個体も眼科系の疾患で他の異常は認められていない。

これら43頭の血液学的検査の結果を表2に示した。測定項目はヘマトクリット値（HCT）、ヘモグロビン量（HGB）、平均赤血球血色素濃度（MCHC）、白血球数（WBC）、顆粒球数（GRANS）、好中球数（NEUT）、好酸球数（EOS）、リンパ球と単球数（L&M）および血小板数（PLT）である。表に示すように各検査項目の値が、いわゆるイヌの正常値範囲から一つでもはずれている個体は43例中24例にも認められているが、正常値をはずれた検査項目と関連の深い他の項目では異常が認められず、血液学的検査における所見からして、いずれの個体においても血液学的には著しい異常はないものと思われる。また、血漿生化学的検査においても、血漿総タンパク、アルブミン、アルカリアミノトランスフェラーゼ、アルカリフィアターゼ、総コレステロール、トリグリセライド、総ビリルビン、クレアチニン、尿素窒素、カルシウム、無機リン、グルコース、ナトリウム、カリウムおよびクロールについて行っているが血液検査と同様、個々の検査項目では正常値を外れる個体が認められるものの、著しい異常値を示す個体は認められなかった。

一般に眼科性疾患においては、血液学的検査や血漿生化学的検査では異常が認められることが多いと言わざるを得ず、今回の結果もこのことを反映するものであった。

表3には測定したクロム（Cr）、マンガン（Mn）、コバルト（Co）、鉄（Cu）、亜鉛（Zn）、
<table>
<thead>
<tr>
<th>個体NO.</th>
<th>性別</th>
<th>年齢</th>
<th>犬種</th>
<th>疾 病</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>8</td>
<td>ダックスフンド前部</td>
<td>ぶどう膜炎</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>12</td>
<td>ミニチュア・シュナウザー</td>
<td>乾性角結膜炎</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>3</td>
<td>アメリカン・コカスパニエル</td>
<td>白内障</td>
</tr>
<tr>
<td>4</td>
<td>M</td>
<td>9</td>
<td>マルチーズ</td>
<td>ぶどう膜炎</td>
</tr>
<tr>
<td>5</td>
<td>SF</td>
<td>9</td>
<td>シベリアン・ハスキー</td>
<td>綠内障</td>
</tr>
<tr>
<td>6</td>
<td>F</td>
<td>11</td>
<td>雑種</td>
<td>角膜炎・緑内障</td>
</tr>
<tr>
<td>7</td>
<td>M</td>
<td>1</td>
<td>ダックスフンド</td>
<td>ぶどう膜炎・網膜萎縮</td>
</tr>
<tr>
<td>8</td>
<td>M</td>
<td>12</td>
<td>シーズー</td>
<td>ぶどう膜炎・白内障・網膜変性</td>
</tr>
<tr>
<td>9</td>
<td>CM</td>
<td>11</td>
<td>柴犬</td>
<td>綠内障</td>
</tr>
<tr>
<td>10</td>
<td>M</td>
<td>5</td>
<td>甲斐犬</td>
<td>綠内障</td>
</tr>
<tr>
<td>11</td>
<td>F</td>
<td>14</td>
<td>キャバリア</td>
<td>乾性角結膜炎</td>
</tr>
<tr>
<td>12</td>
<td>SF</td>
<td>8</td>
<td>キャバリア</td>
<td>綠内障・ぶどう膜炎・白内障</td>
</tr>
<tr>
<td>13</td>
<td>SF</td>
<td>9</td>
<td>キャバリア</td>
<td>角膜ジストロフィ</td>
</tr>
<tr>
<td>14</td>
<td>M</td>
<td>6</td>
<td>雑種</td>
<td>綠内障</td>
</tr>
<tr>
<td>15</td>
<td>M</td>
<td>11</td>
<td>ブルドック</td>
<td>綠内障</td>
</tr>
<tr>
<td>16</td>
<td>M</td>
<td>1</td>
<td>ダックスフンド</td>
<td>ぶどう膜炎・網膜萎縮</td>
</tr>
<tr>
<td>17</td>
<td>CM</td>
<td>11</td>
<td>シーズー</td>
<td>角膜炎・白内障・網膜変性</td>
</tr>
<tr>
<td>18</td>
<td>M</td>
<td>7</td>
<td>ポクサー</td>
<td>角膜潰瘍</td>
</tr>
<tr>
<td>19</td>
<td>CM</td>
<td>8</td>
<td>雑種</td>
<td>角膜潰瘍</td>
</tr>
<tr>
<td>20</td>
<td>F</td>
<td>3</td>
<td>トイ・プードル</td>
<td>角膜ジストロフィ</td>
</tr>
<tr>
<td>21</td>
<td>SF</td>
<td>8</td>
<td>ビーグル</td>
<td>綠膜変性</td>
</tr>
<tr>
<td>22</td>
<td>M</td>
<td>11</td>
<td>柴犬</td>
<td>眼瞼炎</td>
</tr>
<tr>
<td>23</td>
<td>F</td>
<td>3</td>
<td>ウェスティー</td>
<td>ドライ・アイ</td>
</tr>
<tr>
<td>24</td>
<td>M</td>
<td>10</td>
<td>シーズー</td>
<td>角膜炎</td>
</tr>
<tr>
<td>25</td>
<td>F</td>
<td>4</td>
<td>キャバリア</td>
<td>白内障</td>
</tr>
<tr>
<td>26</td>
<td>M</td>
<td>3</td>
<td>アメリカン・コカスパニエル</td>
<td>白内障</td>
</tr>
<tr>
<td>27</td>
<td>M</td>
<td>7</td>
<td>シーズー</td>
<td>白内障</td>
</tr>
<tr>
<td>28</td>
<td>M</td>
<td>13</td>
<td>柴犬</td>
<td>角膜膜腫・白内障・水晶体脱臼</td>
</tr>
<tr>
<td>30</td>
<td>F</td>
<td>3</td>
<td>ダックスフンド</td>
<td>角膜炎</td>
</tr>
<tr>
<td>31</td>
<td>M</td>
<td>4</td>
<td>秋田犬</td>
<td>ぶどう膜炎・硝子体混濁</td>
</tr>
<tr>
<td>32</td>
<td>F</td>
<td>5</td>
<td>プルテリア</td>
<td>綠内障</td>
</tr>
<tr>
<td>34</td>
<td>M</td>
<td>7</td>
<td>シベリアン・ハスキー</td>
<td>健常犬</td>
</tr>
<tr>
<td>35</td>
<td>CM</td>
<td>3</td>
<td>シベリアン・ハスキー</td>
<td>健常犬</td>
</tr>
<tr>
<td>36</td>
<td>SF</td>
<td>5</td>
<td>雑種</td>
<td>ぶどう膜炎</td>
</tr>
<tr>
<td>37</td>
<td>M</td>
<td>5</td>
<td>キャバリア</td>
<td>角膜炎</td>
</tr>
<tr>
<td>38</td>
<td>M</td>
<td>16</td>
<td>ヨークシャーテリア</td>
<td>白内障</td>
</tr>
<tr>
<td>39</td>
<td>F</td>
<td>6</td>
<td>雑種</td>
<td>水晶体脱臼</td>
</tr>
<tr>
<td>40</td>
<td>F</td>
<td>3</td>
<td>アメリカン・コカスパニエル</td>
<td>白内障</td>
</tr>
<tr>
<td>41</td>
<td>F</td>
<td>11</td>
<td>シーズー</td>
<td>角膜炎</td>
</tr>
<tr>
<td>42</td>
<td>F</td>
<td>15</td>
<td>シーズー</td>
<td>角結膜炎</td>
</tr>
<tr>
<td>43</td>
<td>SF</td>
<td>10</td>
<td>柴犬</td>
<td>白内障</td>
</tr>
<tr>
<td>44</td>
<td>M</td>
<td>2</td>
<td>シベリアン・ハスキー</td>
<td>ぶどう膜皮膚症候群</td>
</tr>
<tr>
<td>45</td>
<td>CM</td>
<td>2</td>
<td>雑種</td>
<td>全眼球炎</td>
</tr>
</tbody>
</table>

F：雌，M：雄，SF：雑種，CM：去勢
<table>
<thead>
<tr>
<th>項目</th>
<th>HCT</th>
<th>HGB</th>
<th>MCHC</th>
<th>WBC</th>
<th>GRANS</th>
<th>%GRANS</th>
<th>NEUT</th>
<th>EOS</th>
<th>L&M</th>
<th>%L/M</th>
<th>PLT</th>
</tr>
</thead>
<tbody>
<tr>
<td>個体No</td>
<td>%</td>
<td>g/dl</td>
<td>g/dl</td>
<td>10E9/μl</td>
<td>10E9/μl</td>
<td>%</td>
<td>10E9/μl</td>
<td>10E9/μl</td>
<td>10E9/μl</td>
<td>%</td>
<td>10E9/μl</td>
</tr>
<tr>
<td>1</td>
<td>54.7</td>
<td>18.7</td>
<td>34.2</td>
<td>16.9</td>
<td>15.4</td>
<td>91</td>
<td>91</td>
<td>15</td>
<td>9</td>
<td>390</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>46.8</td>
<td>15.8</td>
<td>33.8</td>
<td>11.8</td>
<td>10.4</td>
<td>88</td>
<td>88</td>
<td>12</td>
<td>12</td>
<td>352</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>50.3</td>
<td>17.7</td>
<td>35.2</td>
<td>9.4</td>
<td>7.9</td>
<td>84</td>
<td>84</td>
<td>9</td>
<td>16</td>
<td>361</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>39.3</td>
<td>13.3</td>
<td>33.8</td>
<td>12.6</td>
<td>11.4</td>
<td>90</td>
<td>90</td>
<td>10</td>
<td>31</td>
<td>512</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>52.1</td>
<td>18.3</td>
<td>35.1</td>
<td>7.7</td>
<td>6.5</td>
<td>84</td>
<td>84</td>
<td>9</td>
<td>16</td>
<td>259</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>53.7</td>
<td>18.7</td>
<td>34.8</td>
<td>9.5</td>
<td>8.1</td>
<td>85</td>
<td>85</td>
<td>9</td>
<td>15</td>
<td>180</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>44.8</td>
<td>14.9</td>
<td>33.3</td>
<td>19.8</td>
<td>18.4</td>
<td>93</td>
<td>93</td>
<td>10</td>
<td>9</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>40.1</td>
<td>13.5</td>
<td>33.7</td>
<td>9.1</td>
<td>7.3</td>
<td>80</td>
<td>80</td>
<td>10</td>
<td>9</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>48.0</td>
<td>16.9</td>
<td>35.2</td>
<td>11.8</td>
<td>9.8</td>
<td>83</td>
<td>83</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>36.8</td>
<td>12.5</td>
<td>34.0</td>
<td>11.5</td>
<td>9.2</td>
<td>74</td>
<td>74</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>44.5</td>
<td>14.7</td>
<td>33.0</td>
<td>3.7</td>
<td>5.1</td>
<td>66</td>
<td>66</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>42.3</td>
<td>14.4</td>
<td>34.0</td>
<td>7.1</td>
<td>5.7</td>
<td>80</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>38.7</td>
<td>13.1</td>
<td>33.9</td>
<td>8.2</td>
<td>6.6</td>
<td>80</td>
<td>80</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>51.9</td>
<td>17.7</td>
<td>34.1</td>
<td>15.5</td>
<td>14.1</td>
<td>91</td>
<td>91</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>38.4</td>
<td>13.1</td>
<td>34.1</td>
<td>7.7</td>
<td>6.5</td>
<td>84</td>
<td>84</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>43.9</td>
<td>14.5</td>
<td>33.0</td>
<td>15.2</td>
<td>13.3</td>
<td>87</td>
<td>87</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>46.7</td>
<td>15.0</td>
<td>32.1</td>
<td>10.8</td>
<td>8.0</td>
<td>74</td>
<td>74</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>53.0</td>
<td>17.9</td>
<td>33.8</td>
<td>7.8</td>
<td>6.2</td>
<td>79</td>
<td>79</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>46.0</td>
<td>15.5</td>
<td>33.7</td>
<td>9.2</td>
<td>7.2</td>
<td>78</td>
<td>78</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>49.1</td>
<td>16.7</td>
<td>34.0</td>
<td>7.4</td>
<td>5.1</td>
<td>69</td>
<td>69</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>41.8</td>
<td>14.2</td>
<td>34.0</td>
<td>10.0</td>
<td>8.1</td>
<td>81</td>
<td>81</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>41.6</td>
<td>13.2</td>
<td>31.7</td>
<td>10.3</td>
<td>8.7</td>
<td>84</td>
<td>84</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>46.1</td>
<td>15.1</td>
<td>32.8</td>
<td>10.8</td>
<td>8.9</td>
<td>82</td>
<td>82</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>42.5</td>
<td>13.8</td>
<td>32.5</td>
<td>10.6</td>
<td>8.0</td>
<td>75</td>
<td>75</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>39.2</td>
<td>13.5</td>
<td>34.4</td>
<td>11.5</td>
<td>10.2</td>
<td>89</td>
<td>89</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>44.6</td>
<td>14.7</td>
<td>33.0</td>
<td>18.5</td>
<td>16.0</td>
<td>86</td>
<td>86</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>27</td>
<td>43.2</td>
<td>14.5</td>
<td>33.6</td>
<td>10.7</td>
<td>8.4</td>
<td>79</td>
<td>79</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>48.3</td>
<td>14.6</td>
<td>30.2</td>
<td>2.7</td>
<td>2.1</td>
<td>78</td>
<td>78</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>29</td>
<td>55.9</td>
<td>17.5</td>
<td>31.3</td>
<td>11.2</td>
<td>7.7</td>
<td>69</td>
<td>69</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>38.0</td>
<td>12.3</td>
<td>32.4</td>
<td>7.4</td>
<td>6.1</td>
<td>82</td>
<td>82</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>46.9</td>
<td>15.4</td>
<td>32.8</td>
<td>15.8</td>
<td>13.7</td>
<td>87</td>
<td>87</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>32</td>
<td>51.2</td>
<td>17.1</td>
<td>33.4</td>
<td>10.0</td>
<td>7.6</td>
<td>76</td>
<td>76</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>33</td>
<td>48.6</td>
<td>16.9</td>
<td>34.8</td>
<td>10.2</td>
<td>7.6</td>
<td>75</td>
<td>75</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>46.3</td>
<td>15.6</td>
<td>33.7</td>
<td>8.0</td>
<td>6.0</td>
<td>75</td>
<td>75</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>41.6</td>
<td>14.6</td>
<td>35.1</td>
<td>13.7</td>
<td>11.9</td>
<td>87</td>
<td>87</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>36</td>
<td>46.2</td>
<td>15.1</td>
<td>32.7</td>
<td>13.3</td>
<td>10.8</td>
<td>81</td>
<td>81</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>37</td>
<td>39.3</td>
<td>13.3</td>
<td>33.8</td>
<td>8.8</td>
<td>7.3</td>
<td>83</td>
<td>83</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>38</td>
<td>45.4</td>
<td>15.4</td>
<td>33.9</td>
<td>9.2</td>
<td>6.6</td>
<td>72</td>
<td>72</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>39</td>
<td>44.2</td>
<td>14.0</td>
<td>31.7</td>
<td>12.2</td>
<td>10.3</td>
<td>84</td>
<td>84</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>51.1</td>
<td>15.6</td>
<td>30.5</td>
<td>10.4</td>
<td>7.6</td>
<td>73</td>
<td>73</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>41</td>
<td>45.1</td>
<td>15.0</td>
<td>33.3</td>
<td>8.9</td>
<td>7.0</td>
<td>79</td>
<td>79</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>42</td>
<td>39.8</td>
<td>13.7</td>
<td>34.4</td>
<td>9.6</td>
<td>7.3</td>
<td>76</td>
<td>76</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
<tr>
<td>43</td>
<td>45.8</td>
<td>15.7</td>
<td>34.3</td>
<td>11.8</td>
<td>8.7</td>
<td>74</td>
<td>74</td>
<td>10</td>
<td>10</td>
<td>342</td>
<td></td>
</tr>
</tbody>
</table>

HCT：ヘマトクリット，HGB：ヘモグロビン，MCHC：血色素濃度，WBC：白血球数，GRANS：顆粒球数，NEUT：好中球数，EOS：好酸球数，L&M：リンパ球、単球数，PLT：血小板数
表 3 血漿中微量元素濃度

<table>
<thead>
<tr>
<th>個体 NO.</th>
<th>Cr</th>
<th>Mn</th>
<th>Co</th>
<th>Cu</th>
<th>Zn</th>
<th>Se</th>
<th>Mo</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1.820</td>
<td>0.835</td>
<td>0.048</td>
<td>27.931</td>
<td>34.549</td>
<td>10.337</td>
<td>4.228</td>
</tr>
<tr>
<td>2</td>
<td>2.076</td>
<td>0.531</td>
<td>0.039</td>
<td>33.325</td>
<td>43.889</td>
<td>9.524</td>
<td>0.888</td>
</tr>
<tr>
<td>3</td>
<td>1.920</td>
<td>0.610</td>
<td>0.038</td>
<td>31.018</td>
<td>42.678</td>
<td>10.785</td>
<td>1.326</td>
</tr>
<tr>
<td>4</td>
<td>2.363</td>
<td>0.558</td>
<td>0.059</td>
<td>39.901</td>
<td>44.667</td>
<td>12.214</td>
<td>3.530</td>
</tr>
<tr>
<td>5</td>
<td>1.811</td>
<td>0.666</td>
<td>0.028</td>
<td>34.214</td>
<td>43.569</td>
<td>11.653</td>
<td>1.419</td>
</tr>
<tr>
<td>6</td>
<td>2.186</td>
<td>0.608</td>
<td>0.121</td>
<td>23.917</td>
<td>26.662</td>
<td>15.662</td>
<td>1.900</td>
</tr>
<tr>
<td>7</td>
<td>2.339</td>
<td>1.065</td>
<td>0.102</td>
<td>29.736</td>
<td>37.998</td>
<td>11.290</td>
<td>0.990</td>
</tr>
<tr>
<td>8</td>
<td>2.177</td>
<td>1.096</td>
<td>0.096</td>
<td>33.024</td>
<td>35.580</td>
<td>12.215</td>
<td>0.837</td>
</tr>
<tr>
<td>9</td>
<td>2.526</td>
<td>1.052</td>
<td>0.095</td>
<td>20.551</td>
<td>46.120</td>
<td>11.766</td>
<td>1.057</td>
</tr>
<tr>
<td>10</td>
<td>2.469</td>
<td>0.701</td>
<td>0.096</td>
<td>21.572</td>
<td>52.189</td>
<td>23.424</td>
<td>2.721</td>
</tr>
<tr>
<td>11</td>
<td>7.740</td>
<td>18.079</td>
<td>1.598</td>
<td>21.666</td>
<td>43.245</td>
<td>19.613</td>
<td>0.493</td>
</tr>
<tr>
<td>12</td>
<td>5.804</td>
<td>12.328</td>
<td>1.071</td>
<td>24.800</td>
<td>52.420</td>
<td>13.280</td>
<td>0.997</td>
</tr>
<tr>
<td>13</td>
<td>1.899</td>
<td>1.090</td>
<td>0.100</td>
<td>17.945</td>
<td>35.198</td>
<td>10.255</td>
<td>0.709</td>
</tr>
<tr>
<td>14</td>
<td>2.463</td>
<td>1.188</td>
<td>0.130</td>
<td>44.090</td>
<td>28.442</td>
<td>14.147</td>
<td>1.462</td>
</tr>
<tr>
<td>15</td>
<td>2.416</td>
<td>1.134</td>
<td>0.103</td>
<td>23.442</td>
<td>35.071</td>
<td>10.955</td>
<td>0.756</td>
</tr>
<tr>
<td>16</td>
<td>2.037</td>
<td>1.098</td>
<td>0.076</td>
<td>23.403</td>
<td>23.339</td>
<td>10.756</td>
<td>2.548</td>
</tr>
<tr>
<td>17</td>
<td>1.923</td>
<td>1.102</td>
<td>0.090</td>
<td>20.415</td>
<td>35.906</td>
<td>10.871</td>
<td>0.257</td>
</tr>
<tr>
<td>18</td>
<td>1.861</td>
<td>1.104</td>
<td>0.081</td>
<td>25.605</td>
<td>23.479</td>
<td>12.440</td>
<td>0.396</td>
</tr>
<tr>
<td>19</td>
<td>2.386</td>
<td>1.230</td>
<td>0.092</td>
<td>28.917</td>
<td>49.883</td>
<td>12.243</td>
<td>0.415</td>
</tr>
<tr>
<td>20</td>
<td>1.598</td>
<td>1.157</td>
<td>0.085</td>
<td>21.924</td>
<td>40.284</td>
<td>9.833</td>
<td>2.018</td>
</tr>
<tr>
<td>21</td>
<td>2.272</td>
<td>1.260</td>
<td>0.093</td>
<td>31.964</td>
<td>52.728</td>
<td>12.328</td>
<td>1.220</td>
</tr>
<tr>
<td>22</td>
<td>2.257</td>
<td>1.222</td>
<td>0.075</td>
<td>38.409</td>
<td>46.706</td>
<td>8.291</td>
<td>1.027</td>
</tr>
<tr>
<td>23</td>
<td>2.433</td>
<td>1.275</td>
<td>0.087</td>
<td>33.208</td>
<td>43.339</td>
<td>13.027</td>
<td>1.019</td>
</tr>
<tr>
<td>24</td>
<td>2.049</td>
<td>0.746</td>
<td>0.078</td>
<td>27.185</td>
<td>36.416</td>
<td>9.384</td>
<td>0.952</td>
</tr>
<tr>
<td>25</td>
<td>2.184</td>
<td>0.824</td>
<td>0.074</td>
<td>25.672</td>
<td>51.659</td>
<td>10.787</td>
<td>1.129</td>
</tr>
<tr>
<td>26</td>
<td>2.176</td>
<td>0.822</td>
<td>0.048</td>
<td>29.805</td>
<td>33.651</td>
<td>11.345</td>
<td>1.574</td>
</tr>
<tr>
<td>27</td>
<td>1.868</td>
<td>0.704</td>
<td>0.049</td>
<td>27.462</td>
<td>27.388</td>
<td>9.076</td>
<td>0.282</td>
</tr>
<tr>
<td>28</td>
<td>1.956</td>
<td>0.761</td>
<td>0.049</td>
<td>33.438</td>
<td>35.562</td>
<td>9.328</td>
<td>0.181</td>
</tr>
<tr>
<td>30</td>
<td>1.803</td>
<td>0.758</td>
<td>0.059</td>
<td>20.768</td>
<td>37.525</td>
<td>15.324</td>
<td>0.923</td>
</tr>
<tr>
<td>31</td>
<td>1.996</td>
<td>0.792</td>
<td>0.056</td>
<td>21.445</td>
<td>55.264</td>
<td>12.411</td>
<td>1.577</td>
</tr>
<tr>
<td>32</td>
<td>2.324</td>
<td>0.960</td>
<td>0.069</td>
<td>25.822</td>
<td>51.927</td>
<td>7.815</td>
<td>0.393</td>
</tr>
<tr>
<td>34</td>
<td>2.086</td>
<td>0.874</td>
<td>0.076</td>
<td>29.753</td>
<td>36.146</td>
<td>6.554</td>
<td>0.954</td>
</tr>
<tr>
<td>35</td>
<td>1.894</td>
<td>0.883</td>
<td>0.079</td>
<td>20.857</td>
<td>32.557</td>
<td>7.254</td>
<td>0.224</td>
</tr>
<tr>
<td>36</td>
<td>1.583</td>
<td>0.791</td>
<td>0.057</td>
<td>21.188</td>
<td>32.854</td>
<td>10.451</td>
<td>0.456</td>
</tr>
<tr>
<td>37</td>
<td>1.947</td>
<td>0.885</td>
<td>0.069</td>
<td>28.337</td>
<td>39.285</td>
<td>12.190</td>
<td>1.308</td>
</tr>
<tr>
<td>38</td>
<td>2.065</td>
<td>0.886</td>
<td>0.067</td>
<td>28.711</td>
<td>40.805</td>
<td>7.451</td>
<td>2.451</td>
</tr>
<tr>
<td>39</td>
<td>1.693</td>
<td>0.982</td>
<td>0.065</td>
<td>19.320</td>
<td>32.657</td>
<td>9.468</td>
<td>0.246</td>
</tr>
<tr>
<td>40</td>
<td>2.077</td>
<td>0.870</td>
<td>0.074</td>
<td>19.144</td>
<td>36.480</td>
<td>9.049</td>
<td>2.250</td>
</tr>
<tr>
<td>41</td>
<td>3.459</td>
<td>3.668</td>
<td>0.319</td>
<td>11.566</td>
<td>34.706</td>
<td>13.561</td>
<td>0.172</td>
</tr>
<tr>
<td>42</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>43</td>
<td>3.382</td>
<td>4.608</td>
<td>0.398</td>
<td>25.970</td>
<td>56.649</td>
<td>8.069</td>
<td>0.710</td>
</tr>
<tr>
<td>44</td>
<td>5.141</td>
<td>3.676</td>
<td>0.328</td>
<td>38.802</td>
<td>27.999</td>
<td>15.408</td>
<td>0.901</td>
</tr>
<tr>
<td>45</td>
<td>4.266</td>
<td>3.932</td>
<td>0.327</td>
<td>23.917</td>
<td>29.994</td>
<td>6.413</td>
<td>0.667</td>
</tr>
<tr>
<td>平均</td>
<td>2.493</td>
<td>1.888</td>
<td>0.160</td>
<td>26.907</td>
<td>39.203</td>
<td>11.386</td>
<td>1.180</td>
</tr>
<tr>
<td>標準偏差</td>
<td>1.196</td>
<td>3.217</td>
<td>0.284</td>
<td>6.654</td>
<td>8.790</td>
<td>3.255</td>
<td>0.900</td>
</tr>
</tbody>
</table>

（単位：ppb）
図1 各体における血液中元素濃度割合の
レーダーチャート

セレン（Se）およびモリブデン（Mo）の個体別
血液中濃度と各個体における各元素の平均値と標
準偏差を示した。また図1では個体ごとの血液中の
各元素濃度をそれぞれの平均値で割った割り合
いをレーダーチャートで図示したものである。図に
示すようにMnおよびCoが著しく高い個体（No.
11, 12）が2例認められ、これら2例のMnおよ
びCo濃度は他の個体に比べ6～10倍以上と高い
値であり、また、Crも他の個体に比べ高い傾向
を示していた。

高値を示した元素は生体にとって必須微量元素
であると同時に発ガン機構にも関与していること
が示唆されている③。また、MnやCoは生体情
報伝達の調節にも関与しており、Mnはイノシトール
リン脂質代謝やカルモクリンとカルシウムの
結合阻害、Coは神経インパルスに対して影響す
ると言われているが、今回の結果からは、これら
の元素が関与したと考えられる疾患を見い出すこ
とはできなかった。しかし、これらの元素が高い値
を示した個体はいずれもキャバリア・キング・チ
ャールズ・スパニエル（キャバリア）であり興味
ある結果であった。測定した42頭の中にキャバリ
アは4頭おり、この内の2頭にMnとCoの高い
値が認められる結果となっているが、とくにこの
犬種は遺伝的に心疾患が出現することも示唆されて
いて①，この犬種とこれらの元素との関連につい
てはさらに検体数を増やし検討をする必要がある
と考えている。

4. 要約

生体内微量元素と疾患に関する基礎的研究とし
て、イヌの血液中のCo, Cr, Cu, Mn, Mo, Seおよび
Znの濃度と血液学的検査、血液生化学的検査
および臨床所見との比較検討を行った。

その結果、MnおよびCo濃度の高い個体が2
例認められたが、血液学的検査および血液生化学
的検査からは顕著な差異は観察されていない。ま
た、これらの元素に起因する考えられる臨床所
見も観察されなかった。しかし、MnおよびCo
の高い値を示した犬種はいずれもキャバリア・キ
ング・チャールズ・スパニエルであり、犬種と微
量元素の関係も今後検討の対象とする必要がある
と思われた。

文獻
1) 木村修一・左右田健次, 微量元素と生体, 第1版,
94-100, 秀潤社, 東京, 1987.
2) 千葉孝之・鈴木和夫, 健康と元素, 第1版, 144-169,
3) 松田一郎・前田 喜, 生態系における微量元素の重
4) Beadrow AW, Buchanan JW, Journal of the
American Veterinary Medical Association, 203(7),
We studied the changes of plasma leptin concentration during fattening in 3 herds of Japanese Black steers and 2 herds of Japanese Black heifers. We also examined the relationship between plasma leptin level and carcass traits. Plasma leptin concentration was increased during fattening period in the steers and heifers. Although there is no great difference between heifers and steers in the thickness of subcutaneous fat or beef marbling, plasma leptin concentration was higher in the heifers than in the steers. These results suggested that heifers showed higher leptin level than steers irrespective of body fat content. The increase in plasma leptin level delayed in the heifers given low-TDN concentrate in the early stage of fattening than in those given high-TDN concentrate, which suggested that dietary energy possibly affected plasma leptin level. The steers showed the significant correlation between plasma leptin level just before slaughter and the thickness of subcutaneous fat or beef marbling that probably reflected body fat content. These results suggested that plasma leptin concentration increased with the accumulation of body fat, i.e., it reflected body fat content, and plasma leptin level possibly used as an index for the degree of fattening. On the other hand, plasma leptin level did not relate to these carcass traits in the heifers. We considered that factor(s) other than body fat content also affected plasma leptin concentration in heifers, which induced no correlation between plasma leptin and the carcass traits.
与した濃厚飼料の化学組成を Table 1 に示した。粗飼料は乾草またはイナワラを自由摂取させた。

Table 1 Chemical composition in concentrate

<table>
<thead>
<tr>
<th>Herd number</th>
<th>Steers</th>
<th>Heifers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Former fattening period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDN(%)</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>DCP(%)</td>
<td>13</td>
<td>15</td>
</tr>
<tr>
<td>Latter fattening period</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TDN(%)</td>
<td>74</td>
<td>75</td>
</tr>
<tr>
<td>DCP(%)</td>
<td>14</td>
<td>14</td>
</tr>
</tbody>
</table>

試験開始から2か月間隔で1年間頭静脉より採血を行った。さらに、殺前1か月以内にも同様に採血を行った。採血した血液は血漿とした後に分析まで凍結保存した。血漿中のレプチン濃度をヒトレプチンならびに抗ヒトレプチン血清を用いた Multi-Species Leptin RIA Kit (Linco 社) を用いて測定した。また、と殺直前に採取した血中レプチン濃度と日本格付協会により評価された枝肉形質の関係を検討した。

肥育に伴うレプチン濃度の変化については SAS (Statistical Analysis System) の MIXED プロシージャを用いて統計検定を行った。第一に、採血時の月齢の効果、群の効果ならびにこれらの交互作用を検討し、第二に、雌牛または去勢牛内における採血時の月齢の効果、群の効果ならびにこれらの交互作用を検討した。次いで、採血時の月齢の効果、性の効果ならびにこれらの交互作用を検討した。各群間および去勢と雌牛間における枝肉特性の比較は SAS の GLM プロシージャを用い一元配置分散分析により行った。また、血中レプチン濃度と枝肉形質の関係については SAS の REG プロシージャを用いて検定を行った。

Fig. 1 Changes in plasma leptin concentration in heifers and steers.
Steers: Herd 1 (○), Herd 2 (□), Herd 3 (△)
Heifers: Herd 4 (■), Herd 5 (▲)
Comparison among each herd: Effect of time; P<0.001, Effect of herd; P<0.001, Interaction; P<0.001
Comparison between sex: Effect of time; P<0.001, Effect of sex; P<0.001, Interaction; P<0.05
Within steers: Effect of time; P<0.001, Effect of herd; P<0.05, Interaction; P<0.05
Within heifers: Effect of time; P<0.001, Effect of herd; P<0.001, Interaction; P<0.001
3. 結果および考察

血中レプチン濃度はいずれの牛群においても試験期間を通して上昇した（Fig. 1）。去勢牛におけるレプチン濃度は、飼養条件が異なっているにもかかわらず各群間で差は認められなかった。去勢牛と比較し雌牛に有意に高い血中レプチン濃度を示した。また、雌牛第4群は第5群と比較し有意に高い血中レプチン濃度を示した。第4群では22ヶ月齢以降のレプチン濃度に変化は認められなかったが、第5群では22ヶ月齢以降も上昇した。と殺直前の血中レプチン濃度の変動係数は去勢牛である1,2,3群では、それぞれ14.4%, 17.0%, 16.7%であったが、雌牛の第4群ならびに第5群では21.2%, 23.4%であり、雌牛では去勢牛と比較してレプチン濃度の個体差が大きかった。

枝肉形質において皮下脂肪厚以外の項目は群の効果が有意となった（Table 2）。また、枝肉重量およびバラ厚は去勢牛と比較し雌牛で低くなった。

雌牛である第4群と第5群を比較すると、皮下脂肪厚ならびにバラ厚は第5群で多い傾向にあった。ロース芯面積ならびに脂肪交雑基準（BMS）には性差は認められなかったが、第3群および第4群で他の区と比較し低い傾向を示し、雌牛である第4群と第5群の間ではこの差は有意なものとなった。

血中レプチン濃度が性の影響を受けたので、去勢牛ならびに雌牛内におけると殺直前の血中レプチン濃度と枝肉形質との相関を求めた（Table 3）。さらにすべてのウシの値をプールし相関を求めた。枝肉重量は全体をプールした場合、血中レプチン濃度との間に有意な関係が認められた。

去勢牛においてはロース芯面積、皮下脂肪厚、BMSとレプチン濃度には有意または有意に近い相関関係が認められた。さらに、BMSとロース芯面積には高い正の相関が認められた（P<0.01；r²=0.37）。一方、雌牛においてはすべての枝肉形質とレプチン濃度との間に相関関係は認められなかった。

Table 2 Carcass traits of beef cattle

<table>
<thead>
<tr>
<th>Herd number</th>
<th>Steers</th>
<th>Heifers</th>
<th>Effect of Herd</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Number of Animals</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Dressed carcass weight (kg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6)</td>
<td>450.0±18.0a</td>
<td>430.0±22.1b</td>
<td>441.5±15.6b</td>
</tr>
<tr>
<td>(386-476)</td>
<td>(399-463)</td>
<td>(387-482)</td>
<td></td>
</tr>
<tr>
<td>Dressing percentage (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(71.8-75.1)</td>
<td>74.4±0.4ac</td>
<td>73.2±0.8abcd</td>
<td>72.3±0.6bcd</td>
</tr>
<tr>
<td>(72-74.9)</td>
<td>(71.3-73.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rib eye area (cm²)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(38-69)</td>
<td>62.3±3.6a</td>
<td>55.5±4.4abcd</td>
<td>45.3±3.1bcd</td>
</tr>
<tr>
<td>(51-64)</td>
<td>(39-53)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness of rib (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(6.4-7.7)</td>
<td>7.43±0.29abc</td>
<td>7.80±0.36abcde</td>
<td>7.30±0.26bcde</td>
</tr>
<tr>
<td>(6.4-8.2)</td>
<td>(6.5-7.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness of subcutaneous fat (cm)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(2.4-4.0)</td>
<td>2.7±0.4</td>
<td>3.6±0.4</td>
<td>2.6±0.3</td>
</tr>
<tr>
<td>(2.3-4.1)</td>
<td>(2.0-3.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMS²</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3-8)</td>
<td>6.0±1.0abc</td>
<td>8.0±1.3a</td>
<td>3.5±0.9abc</td>
</tr>
<tr>
<td>(7-9)</td>
<td>(3-4)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are mean ± SE
The range of each value was shown in the parenthesis.
1: Effect of sex is significant (P<0.05).
2: Beef marbling score (12 is maximum grade).
abc: Means having no common superscript letter significantly differ (P<0.05).
血中レプチン濃度はいずれの牛群においても試験期間を通して上昇したことから、肥育に伴い血中レプチン濃度は上昇することが示唆された。去勢牛と比較し雌牛は高い血中レプチン濃度を示したが、体脂肪を示すと考えられる皮下脂肪厚は去勢牛と雌牛の間で差は認められず、脂肪交雑も性の影響を受けなかった。血中レプチン濃度は男性と比較し女性で高いことが知られている。一般に男性と比較し女性の体脂肪量は高いので、この性差は体脂肪量の差が原因である可能性も考えられるが、体脂肪量が等しい場合でも血中レプチン濃度は女性の方が高いことが報告されている4)。本試験の結果は、雌牛においても体脂肪量に関わらず血中レプチン濃度は高いことを示唆している。

雌牛である第5群はやはり雌牛である第4群と比較し血中レプチン濃度上昇は遅延した。第5群は第4群と比較し、肥育前期に与えられた濃厚飼料のTDNが低かったことから、給与エネルギーの差が血中レプチン濃度に影響を及ぼすことが示唆された。一方、皮下脂肪厚、バラ厚ならびにBMSは第4群と比較し第5群で高かった。肥育後期の飼料中TDN含量は第5群で多かったことから、肥育後期に第5群では著しい脂肪蓄積が生じ、と殺活時には第4群以上に脂肪が蓄積されたものと推察された。血中レプチン濃度は第4群では22ヶ月齢以降は安定していたが、第5群では肥育後期においてもレプチン濃度上昇が認められており、この相違も飼料中TDN量の差に起因している可能性が推察された。

すべての個体を用いてレプチン濃度との相関を検討した結果、枝肉重量との間に負の相関が認められた。これは雌牛における高いレプチン濃度ならびに低い枝肉重量に起因していることが推察された。

去勢牛において皮下脂肪厚ならびに脂肪交雑とレプチン濃度は正の相関関係を示した。そこで、去勢牛ではレプチン濃度は体脂肪量を示しており、肥育度の指標として用いることができることが推察された。一方、雌牛においてはすべての枝肉形質とレプチン濃度との間には相関関係は認められなかった。と殺直前の血中レプチン濃度は去勢牛と比較し雌牛で個体差が大きかった。一方、枝肉形質は去勢牛と比較し雌牛における個体差は明白でなかった。これらの結果から、雌牛では体脂肪量以外の要因が血中レプチン濃度に大きな影響を及ぼしている可能性が考えられる。先に述べたように、男性と比較し女性における高い血中レプチン濃度は体脂肪量に関係がないことが報告されている4)。ラットにおいて卵巣摘出を行うと採食量が上昇するが、この一因としてエストロジェン欠乏が示唆されている5)。また、培養脂肪細胞においてエストロジェンはレプチン分泌を促進することが報告されている6)。そこで、雌牛では血中レプチン濃度はエストロジェンの影響を受けてい

<table>
<thead>
<tr>
<th>Table 3 Correlation between leptin concentrations and carcass traits in finished cattle.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Dressed carcass weight</td>
</tr>
<tr>
<td>Dressing percentage</td>
</tr>
<tr>
<td>Rib eye area</td>
</tr>
<tr>
<td>Thickness of rib</td>
</tr>
<tr>
<td>Thickness of subcutaneous fat</td>
</tr>
<tr>
<td>BMS</td>
</tr>
</tbody>
</table>
る可能性があり、性周期に伴う血中エストロジェン濃度変化が血中レプチン濃度に影響を及ぼすため、体脂肪の指標である皮下脂肪厚やバラ厚、BMS とレプチン濃度との間に関連が認められなかったものと推察された。

本試験では去勢牛においてロース芯面積と血中レプチン濃度に高い正の相関が認められた。脂肪交雑が高いロース芯ではその面積も大きいことが知られている。本試験において BMS とロース芯面積には高い正の相関があった。そこで本試験で認められたロース芯面積と血中レプチン濃度の正の相関には脂肪交雑が関与している可能性がある。

4．要約

本試験では3群の黒毛和種去勢牛ならびに2群の黒毛和種雌牛に於いて血中に伴う血漿中レプチン濃度変化ならびにレプチン濃度と枝肉形質の関係を検討した。去勢牛ならびに雌牛において肥育に伴い血中レプチン濃度は上昇する。また、レプチン濃度は去勢牛と比較し雌牛で高いことが示された。一方、体脂肪量を示すと考えられる皮下脂肪厚や脂肪交雑には去勢牛と雌牛で明らかな差は認められなかった。これらの結果から、肥育による体脂肪量の増加に伴い血中レプチン濃度は上昇するが、去勢牛と比較し雌牛では体脂肪量とは関わりなく血中レプチン濃度は高いことが示唆されている。肥育前期に TDN 含量の低い濃厚飼料を給与された雌牛では、TDN 含量の高い濃厚飼料を給与されたものと比較し、レプチン濃度の上昇は遅延した。そこで、給与エネルギーの差はレプチン濃度に影響を及ぼす可能性が考えられた。去勢牛において皮下脂肪厚ならびに脂肪交雑とレプチン濃度は有意または有意に近い相関関係が認められた。そこで、去勢牛では血中レプチン濃度は体脂肪量を反映していることが示唆され、肥育度の指標として用いることができることが推察された。一方、雌牛においてはすべての枝肉形質とレプチン濃度との間には相関関係は認められなかった。雌牛においては体脂肪量以外の要因も血中レプチン濃度に影響を与えており、そのため枝肉形質と血中レプチン濃度との間に関係が認められなかったものと推察された。

文 献
The objective of this study was to relate the expression of leptin, which is thought to have a role of in angiogenesis, to the extent of muscle marbling in Japanese Black and Holstein cattle. It has been reported that leptin mRNA is expressed in the muscle of rats, however, there are no reports concerning leptin expression in the bovine.

Firstly, we examined the expression of leptin mRNA by RT-PCR in M. longissimus thoracis of Holstein steers. Leptin mRNA was found to be expressed in bovine muscle at the same level as in bovine adipose tissue.

Secondly, we compared leptin mRNA expression in M. longissimus thoracis between Japanese Black steers, which have high marbling scores, and Holstein steers, which have low marbling scores using semi-quantitative RT-PCR analysis. Leptin mRNA expression was found to be significantly lower in the M. longissimus thoracis of a 9 month old Holstein steer compared with that of a 9 month old Japanese Black steer.

From a point of view of angiogenesis, it would be pertinent to elucidate the involvement of leptin in the marbling of muscle in beef cattle, and further experiments are needed to clarify the mechanism for the difference observed between the breeds in this study.

1. 目的

わが国では，筋肉内脂肪の多い，すなわち脂肪交雑度が高い牛肉ほど肉としての商品価値が高いが，脂肪交雑機構は明らかにされていない。従って，この脂肪交雑機構を解明し，肉生産性向上のための新しい技術開発を行うことは，畜産，食肉業界の発展につながるものと思われる。

筋肉内に脂肪を蓄積するには，そこに様々な因子の伝達経路である血管の形成と脂肪前駆細胞の存在が必要不可欠である。血管の存在しない所に脂肪細胞が存在しないことを考えると，筋肉内の血管形成の視点から研究を行うことも必要である。筋肉内の脂肪蓄積の点だけを検討しても，確かに筋肉内に脂肪は蓄積されるかもしれないが，そこには血管が細部まで発達していないのなら，いわゆる“霜降り肉”に見られるような，きめ細やかな脂肪の蓄積が認められない。脂肪交雑はウシ筋肉特有のものであり，特に黒毛和種牛において顕著である。ホルスタイン牛では筋肉中に第2次筋束までしか血管は存在しないが，黒毛和種牛では第1次筋束まで血管が発達している。つまり黒毛和種牛の脂肪交雑の入りやすさは，筋肉中細部まで血管が発達しているためと考えられる。

近年，レプチンというタンパク質が脚光を浴びている。レプチンは主に脂肪細胞から分泌され，脳視床下部に存在するレプチンレセプターを介して，飽食因子としての作用があることが知られ
ている3）。最近の研究により脂肪細胞以外の筋肉細胞でもレプチンが発現していることが明らかになった4）。またレプチンは血管内皮細胞に直接作用し血管新生作用を有することが明らかとなっ

そこで本研究は、血管新生因子としてのレプチンに着目し、筋肉内の血管新生という視点から脂肪交差の機構を明らかにすることを目的として研究を行った。初めにRT-PCR法でウシ筋内組織でのレプチン発現の有無を検討した。続いて、脂肪交差機構の発達している黒毛和種牛の胸最長筋部位と、ほとんど筋肉内に脂肪の蓄積が認められ

2．材料および方法

2.1 実験材料

成ホルスタイン雄牛の背部骨格筋、皮下脂肪、肝臓組織および9カ月齢の黒毛和種牛、ホルスタイン雄牛の胸最長筋部位を供試した。

2.2 RT-PCR法

各組織よりpoly A'RNAを調整し、逆転写反応によりcDNAを合成した。レプチンセンスプライマー(5'-GTGCCATCCGCAAGGTCAA3')、レプチンアンチセンスプライマー(5'-TCAGCACCGGACTGAGGT-3')、G3PDH

センスプライマー(5'-ACACAGTCATCGCCTCAC-3')、G3PDH アンチセンスプライマー(5'-TCCACCACCTGTGCGTA-3')を用いてPCRを行った。反応条件はレプチンは95°C1分間、64°C1分間、72°C1分間、40サイクルで行い、G3PDHは95°C1分間、55°C1分間、72°C1分間、25サイクルで行った。アガロースゲル電気泳動後、エチジウムプロマイドで染色し紫外外光下で観察した。また得られたPCR産物をプラスミドベクターにクローニングした後、塩基配列を決定した。

2.3 半定量的PCR法

レプチンは20から40サイクル、G3PDHは14か

ら30サイクルまで2サイクル間隔でPCRを行っ

た。アガロースゲル電気泳動後、エチジウムプロ

マイド染色を行い、Fluor-S MultiImager (Bio-

Rad)でバンド強度を測定し、最適サイクル数を

決定した。続いて、黒毛和種牛、ホルスタイン牛の胸最長筋部位におけるレプチンmRNA発現量の比較を、決定したサイクル数のPCRにより行った。

3．結果と考察

3.1 ウシ筋内組織におけるレプチンmRNA

発現の有無

ラットの筋肉においてレプチンmRNAが発現

していることが明らかになっているが、ウシにお

いては明らかになっていない。そこで成ホルスタ

イン牛の筋肉組織からpoly A'RNAを調整し、

ウシレプチンプライマーを用いてRT-PCR解析

を試みた。ウシ筋肉組織において、脂肪組織同様

に予想された440bpのバンドが認められた(Fig.

1)。また今回得られた440bpのPCR産物の塩基

G3PDH

bp

603-310

leptin

bp

603-310

Fig. 1 RT-PCR analysis of the expression of leptin (upper panel) and G3PDH (lower panel) mRNA in various bovine tissues.

M, Molecular weight marker; Lane 1, adipose tissue; lane 2, skeletal muscle; lane 3, liver; lane 4, RT negative control.
配列を決定した結果、ウシレプチンと100%の相同性があることを確認できた。以上のことから、ウシ筋肉組織においてもレプチンmRNAが発現していることが明らかとなった。

3.2 最適サイクル数の決定

黒毛和種牛、ホルスタイン牛の胸最長筋部位におけるレプチンmRNA発現量を比較検討する方法として、半定量的PCR法を用いて行うこととした。最初に、最適なPCR反応条件を検討した。レプチンについては、増幅サイクル数に対するPCR産物のバンド強度の関係は28から38サイクルの間で線状になり、その相關係数r=0.9937であった（Fig.2-A）。また内部標準遺伝子であるG3PDHでは18から28サイクルの間で線状になり、その相關係数r=0.9883であった（Fig.2-B）。以上のことから今後、レプチンは33サイクルで、G3PDHは22サイクルでPCRを行うこととした。

3.3 レプチンmRNA発現量の比較

黒毛和種牛（9カ月齢）、ホルスタイン牛（9カ月齢）の胸最長筋からpoly A+RNAを調整しレプチン（33サイクル）とG3PDH（22サイクル）のPCRを行った。PCR産物をアガロースゲル電気泳動し、Fluor-S MultiImager（Bio-Rad）でバンド強度を測定した。G3PDHのバンド強度に対するレプチンのバンド強度の値をグラフ化したものがFig.3である。黒毛和種牛では1.00±0.09であるのに対して、ホルスタイン牛では0.32±0.13と有意に低い値を示した。つまり9カ月齢のホルスタイン牛の胸最長筋におけるレプチンmRNA発現量は黒毛和種牛のそれ以下であることが確認された。

Fig. 2 Optimization of RT-PCR conditions for semi-quantitative determination of Leptin (A) and G3PDH mRNA (B) in bovine skeletal muscle. Different numbers of PCR cycles for amplification increased the amount products in the exponential phase. The experiment was carried out using total RNA. Values are given as mean±S.D. of three independent determinations.

Fig. 3 A difference of the Leptin mRNA expression in the M. longissimus thoracis between Japanese Black Cattle and Holstein steer. Total RNA was isolated from the M. longissimus thoracis of Japanese Black Cattle (J) and Holstein cow (H), and subjected to semi-quantitative RT-PCR analysis. Leptin mRNA abundance assigned as a ratio to G3PDH mRNA. The results are represented as the mean±S.D. of three independent determinations. *: P<0.01 vs. J.
チン mRNA 発現は、同月齢の黒毛和種牛のそれより有意に低いことが明らかとなった。ただこのことだけでは、筋肉細胞由来のレプチンが血管新生作用を有しており、ホルスタイン牛に比べ黒毛和種牛の方が脂肪交雑を形成しやすい理由にはならないと考えている。また月齢によって筋肉中のレプチン mRNA 発現量は両種では異なる可能性も否定できない。どの動物種においても筋肉細胞由来のレプチンの役割については明らかとなっていない。ただ血管新生という視点で脂肪交雑機構を解明する第一歩として、今回明らかとなった知見は非常に有用な基礎的データと成り得ると思う。今後、より詳細にホルスタイン牛と黒毛和種牛を比較検討する in vivo, in vitro 実験を遂行することで、脂肪交雑機構の解明が大きく前進できると考えている。

4. 要約

本研究は脂肪交雑機構の解明を血管新生という視点から解明することを目的として、血管新生因子作用を有するレプチンに着目して検討を行った。これまでラットの筋肉組織でレプチン mRNA が発現していることが明らかとなっているが、ウシ筋肉組織では明らかとなっていない。そこでまず初めにウシ筋肉組織においてレプチン mRNA が発現しているか否か RT-PCR 法により検討した。その結果、ウシ筋肉組織においても脂肪組織同様、レプチン mRNA が発現していることが明らかになった。続いて、脂肪交雑機構の発達している黒毛和種牛の胸最長筋部位と、ほとんど筋肉内に脂肪の蓄積が認められないホルスタイン種の同部位におけるレプチン遺伝子発現量を半定量的 PCR 法で比較検討した。その結果、9カ月齢のホルスタイン牛の胸最長筋におけるレプチン mRNA 発現は、同月齢の黒毛和種牛のレプチン mRNA 発現に比べ有意に低いことが明らかになった。さらなる詳細な研究が必要であるが、今回の知見は、血管新生という視点で脂肪交雑機構を解明する第一歩として有用な基礎的データと成り得る。

文 献
Restricted maximum likelihood analyses fitting an animal model were conducted to estimate genetic parameters with a pooled-data set of performance tests (growth traits and feed intake) on 661 bulls and progeny test (growth traits and carcass traits) on 535 steers. Traits studied included concentrate intake (CONC), roughage intake (ROU), TDN conversion (TCNV), TDN intake (TINT) of bulls; rib eye area (REA), marbling score (MARB), dressing percentage (DRES), subcutaneous fat depth (SCF) of steers. Body weight at start (BWS), body weight at finish (BWF) and average daily gain (ADG) of all animals were measured. Estimated heritabilities were 0.18 (CONC), 0.71 (ROU), 0.11 (TCNV) and 0.36 (TINT); 0.02 (REA), 0.49 (MARB), 0.15 (DRES), 0.15 (SCF), and from 0.20 to 0.38 for growth traits. Genetic correlations of ROU were different from those of CONC, probably due to inconsistent restrictions on concentrate intake; those of TINT with the weights, ADG and SCF were high. MARB showed positive genetic correlations with growth traits and low correlations with TINT and SCF. High potentiality for improvement of marbling score was suggested.

1. 目的

2. 材料および方法

2.1 データ
分析データは岡山県総合畜産センターで検定された黒毛和種雄牛の PFM と PRG 記録である (Table 1)。分析に供した全個体数は、記録をもたない血統個体を含め4,455であった。検定事業初期における少数の雄牛を除き、PRG のすべての雄牛は PFM の結果によって選抜された。

2.2 個体ごとの能力検定
雄牛の検定期間は、1974年以降には140日間、それ以前は112日であった。予備飼育期間は、検定前の20日間である。指定された農家から集められた雄子牛は、月齢で6～7カ月齢、体重で200～300kg、体長で105～115cmの範囲にあった。PFM では、およそ200頭の雄子牛からの20から30頭の子牛が選抜され、検定場に移送されて、そして自由運動のためのパドック (10m²) が隣接する個別飼育 (2.7×3.6m) に収容された。同一の期間および環境下で検定された個体群は、同期群と定義された。各個体は、粗飼料（干し草）を自由摂取できるが、濃厚飼料摂取は1日2回、1時間ずつの制限摂取であった。測定形質は、開始時体重 (BWS, kg)，終了時体重 (BWF, kg)，検定期間の1日平均増体量 (ADG, kg)，濃厚飼料摂取量 (CONC, kg)，粗飼料摂取量 (ROU, kg)，TDN 摂取量 (TINT, kg)，TDN 要求率 (TCNV) である。各形質の平均値、標準偏差 (SD) および変動係数 (CV) が、開始時日齢 (AGES, 日)，終了時日齢 (AGEF, 日) に関する統計値とともに Table 2 に表示されている。

2.3 後代検定
検定期間は、1970年以降には329日間、1970から1976までの間は301日間、それ以降は364日間である。PRG では、毎年20から30頭の雄牛から PFN の検定結果により3から4頭の個体が選抜

Table 1 Description of data structure.

<table>
<thead>
<tr>
<th>Data set</th>
<th>Traits</th>
<th>Animals</th>
<th>Sires</th>
<th>Dams</th>
<th>Years</th>
<th>Cohort</th>
</tr>
</thead>
<tbody>
<tr>
<td>Performance test</td>
<td>7</td>
<td>661</td>
<td>55</td>
<td>521</td>
<td>25</td>
<td>144</td>
</tr>
<tr>
<td>(1971-1995)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Progeny test</td>
<td>7</td>
<td>535</td>
<td>68</td>
<td>518</td>
<td>24</td>
<td>69</td>
</tr>
<tr>
<td>(1967-1994)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The number of animals including pedigree animals is 4,455.

Table 2 Means, SDs, and CVs for variables in the performance test and progeny test

<table>
<thead>
<tr>
<th>AGES (AGEF)</th>
<th>BWS</th>
<th>BWF</th>
<th>ADG</th>
<th>CONC</th>
<th>ROU</th>
<th>TCNV</th>
<th>TINT</th>
<th>REA</th>
<th>MARB</th>
<th>DRES</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>230.7</td>
<td>346.0</td>
<td>270.2</td>
<td>410.7</td>
<td>122</td>
<td>689</td>
<td>371.1</td>
<td>4.810</td>
<td>670.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SD</td>
<td>17.3</td>
<td>18.6</td>
<td>33.5</td>
<td>41.9</td>
<td>0.16</td>
<td>131</td>
<td>96.6</td>
<td>0.58</td>
<td>92.8</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CV (%)</td>
<td>7.5</td>
<td>5.4</td>
<td>12.4</td>
<td>10.2</td>
<td>13.0</td>
<td>19.1</td>
<td>26.0</td>
<td>12.1</td>
<td>13.8</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Performance test</th>
<th>Mean</th>
<th>SD</th>
<th>CV (%)</th>
<th>Performance test</th>
<th>Mean</th>
<th>SD</th>
<th>CV (%)</th>
<th>Progeny test</th>
<th>Mean</th>
<th>SD</th>
<th>CV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGEF (AGEF)</td>
<td>258.2</td>
<td>613.5</td>
<td>523.9</td>
<td>554.7</td>
<td>0.847</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>18.6</td>
<td>28.5</td>
<td>33.2</td>
</tr>
<tr>
<td>BWS (kg)</td>
<td>16.3</td>
<td>13.1</td>
<td>11.1</td>
<td>13.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.9</td>
<td>1.01</td>
<td>2.3</td>
</tr>
<tr>
<td>BWF (kg)</td>
<td>126.7</td>
<td>40.6</td>
<td>3.7</td>
<td>28.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
<td>40.6</td>
<td>3.7</td>
</tr>
<tr>
<td>ADG (kg)</td>
<td>0.7</td>
<td>0.4</td>
<td>0.3</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>5.9</td>
<td>1.01</td>
<td>2.3</td>
</tr>
<tr>
<td>CONC (kg)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
<td>40.6</td>
<td>3.7</td>
</tr>
<tr>
<td>ROU (kg)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
<td>40.6</td>
<td>3.7</td>
</tr>
<tr>
<td>TCNV (kg)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
<td>40.6</td>
<td>3.7</td>
</tr>
<tr>
<td>TINT (kg)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
<td>40.6</td>
<td>3.7</td>
</tr>
<tr>
<td>REA (cm²)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
<td>40.6</td>
<td>3.7</td>
</tr>
<tr>
<td>MARB (%)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
<td>40.6</td>
<td>3.7</td>
</tr>
<tr>
<td>DRES (%)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
<td>40.6</td>
<td>3.7</td>
</tr>
<tr>
<td>SCF (mm)</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.01</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>12.6</td>
<td>40.6</td>
<td>3.7</td>
</tr>
</tbody>
</table>

*Abbreviations of variables: AGES (age at start of test), AGEF (age at finish), BWS (body weight at start), BWF (body weight at finish), ADG (average daily gain), CONC (concentrate intake), ROU (roughage intake), TCNV (TDN conversion), TINT (TDN intake), REA (rib eye area), MARB (marbling score), DRES (dressing percentage) and SCF (subcutaneous fat depth).
され、検定にかけられた。検定牛の子牛（8〜10頭）は、協力農家において生産され、去勢され後6カ月から7カ月齢で検定場に移され、運動のために用意されたバドック（36から40㎡）付の肥育舎（45から50㎡）に検定牛の子牛ごとに収容された。去勢牛には濃厚飼料、粗飼料と水を自由摂取で与えられた。

2.4 統計的方法

REML VCEプログラム（Groeneveld, 1994）の3.2を使い、分散共分散成分を推定した。最初にSAS（1992）、GLM プロシージャを使い、分析モデルに当てはめる母数効果について検討した。統計的に有意な母数効果と共変量は、同期群（CH）、AGESまたはAGEFであった。出産時における母の年齢の効果は、統計上有意性がみられなかったため、モデルから除外した。MARB評価法は、1987年にロース芯の標準モデルに基づいたより客観的な方法に変えられた。

PFMとPRGの記録の間に弱い連関性（connectedness）しかなく、PFM後には選抜の影響があるので、PFMとPRGをまとめたデータセットを用いた分析を行う前に、ADG、BWSとBWFの間で共通の形質を探した。

予備分析の結果、PFMとPRGにおけるADGの遺伝率は、それぞれ0.15と0.36で、両者間の遺伝相関は0.64であった。BWSにおける対応する値はそれぞれ0.37と0.32で、遺伝相関は1.0、BWFでは0.35と0.48で、遺伝相関は0.79と推定された。

両検定のBWSは、データセットの連関性（connectedness）を増やすため、そして選抜の効果を減らすために共通の形質として分析モデルに含めた。この分析で使われた統計モデルは次のとおりである。

\[Y_{ij} = F_i(j) + a_{ij} + e_{ij} \]

ここで

\[F_i = CH_i \cdots \text{(ADG, REA, MARB)} \]

または

\[F_i = CH_i + b_i \text{ (AGES}_{ij} - \bar{AGES}) \cdots \text{(BWS)} \]

または

\[F_i = CH_i + b_i \text{ (AGEF}_{ij} - \bar{AGEF}) \cdots \text{(BWF, CONC, ROU, TCNV, TINT, DRES, SCF)} \]

また、

\[Y_{ij} : \text{個体の表型値} \]

\[a_{ij} : \text{個体の相加的遺伝子型値} \]

\[e_{ij} : \text{変量残差} \]

\[CH_i : \text{i番目の同期群の母数効果} \]

\[b_i : \text{日齢に対する線形偏回帰係数} \]

\[AGEX_{ij} : \text{i番目の同期群におけるj番目の個体の日齢、ただしX にはS（開始時日齢）またはF（終了時日齢）が入る} \]

\[AGEX : \text{日齢の集団平均} \]

PFMにおける形質の分散共分散成分の推定は、2形質モデルによって行われた。また、PRGまたはPFMとPRGの間の分散共分散成分の推定には、BWSを含めた3形質モデルによって行われた。複数の遺伝散布と遺伝率の推定値からその平均が算出された。一方、それらの標準誤差（SE）には、推定されたSEの中央値が用いられた。

3. 結果と考察

3.1 能力検定形質のための遺伝的パラメータ

PFM形質の遺伝的パラメータ推定値をTable 3に示した。BWSとBWFの遺伝率は中程度で、Koots et al.（1994a）によって総括された1才時体重の平均値と一致した。ROU遺伝率は総括にある飼料摂取量（.41）の平均より低いが、CONCの遺伝率はそれよりも高かった。一方、TINTの遺伝率は総括にある平均値と一致した。ADGとTCNV遺伝率は、総括にある乳乳後増体重と飼料要求率の遺伝率平均値より低かった。
Table 3 Estimates of heritabilities, genetic correlations\(^a\) (above diagonal) and phenotypic correlations (below diagonal) in the performance test

<table>
<thead>
<tr>
<th>Trait</th>
<th>BWS</th>
<th>BWF</th>
<th>ADG</th>
<th>CONC</th>
<th>ROU</th>
<th>TCNV</th>
<th>TINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heritability</td>
<td>0.38 ± 0.11</td>
<td>0.37 ± 0.10</td>
<td>0.20 ± 0.09</td>
<td>0.18 ± 0.10</td>
<td>0.71 ± 0.11</td>
<td>0.11 ± 0.06</td>
<td>0.36 ± 0.15</td>
</tr>
<tr>
<td>Correlations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWS</td>
<td>1.0(^c)</td>
<td>1.00 ± 0.01</td>
<td>0.69 ± 0.24</td>
<td>0.16 ± 0.17</td>
<td>−0.24 ± 0.32</td>
<td>0.65 ± 0.30</td>
<td></td>
</tr>
<tr>
<td>BWF</td>
<td>0.83</td>
<td>0.97 ± 0.11</td>
<td>0.62 ± 0.21</td>
<td>0.49 ± 0.17</td>
<td>−0.34 ± 0.28</td>
<td>0.71 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>ADG</td>
<td>0.18</td>
<td>0.64</td>
<td>0.55 ± 0.31</td>
<td>1.00 ± 0.00</td>
<td>−0.51 ± 0.30</td>
<td>0.80 ± 0.13</td>
<td></td>
</tr>
<tr>
<td>CONC</td>
<td>0.31</td>
<td>0.55</td>
<td>0.55</td>
<td>0.95 ± 0.11</td>
<td>0.50 ± 0.43</td>
<td>0.88 ± 0.13</td>
<td></td>
</tr>
<tr>
<td>ROU</td>
<td>0.31</td>
<td>0.43</td>
<td>0.41</td>
<td>0.33</td>
<td>−0.60 ± 0.26</td>
<td>1.00 ± 0.00</td>
<td></td>
</tr>
<tr>
<td>TCNV</td>
<td>0.17</td>
<td>−0.31</td>
<td>−0.74</td>
<td>0.07</td>
<td>−0.05</td>
<td>0.14 ± 0.40</td>
<td></td>
</tr>
<tr>
<td>TINT</td>
<td>0.37</td>
<td>0.60</td>
<td>0.60</td>
<td>0.93</td>
<td>0.57</td>
<td>0.05</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Averages and SEs.
\(^b\)See ‘Table 2’ for abbreviations of the traits.
\(^c\)SE was not estimated.

Table 4 Estimates of heritabilities, genetic correlations\(^a\) (above diagonal) and phenotypic correlations (below diagonal) in the progeny test

<table>
<thead>
<tr>
<th>Trait</th>
<th>BWS</th>
<th>BWF</th>
<th>ADG</th>
<th>REA</th>
<th>MARB</th>
<th>DRES</th>
<th>SCF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heritability(^a)</td>
<td>0.31 ± 0.09</td>
<td>0.36 ± 0.13</td>
<td>0.23 ± 0.14</td>
<td>0.02 ± 0.04</td>
<td>0.49 ± 0.13</td>
<td>0.15 ± 0.12</td>
<td>0.15 ± 0.14</td>
</tr>
<tr>
<td>Correlations</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWS</td>
<td>0.93 ± 0.09</td>
<td>0.82 ± 0.25</td>
<td>−0.83 ± 0.42</td>
<td>0.36 ± 0.30</td>
<td>−0.33 ± 0.41</td>
<td>0.97 ± 0.10</td>
<td></td>
</tr>
<tr>
<td>BWF</td>
<td>0.70</td>
<td>0.97 ± 0.04</td>
<td>−0.74 ± 1.25</td>
<td>0.35 ± 0.33</td>
<td>−0.13 ± 0.38</td>
<td>0.88 ± 0.35</td>
<td></td>
</tr>
<tr>
<td>ADG</td>
<td>0.25</td>
<td>0.87</td>
<td>−0.56 ± 1.45</td>
<td>0.31 ± 0.28</td>
<td>0.10 ± 0.58</td>
<td>0.74 ± 0.56</td>
<td></td>
</tr>
<tr>
<td>REA</td>
<td>0.19</td>
<td>0.29</td>
<td>0.26</td>
<td>0.81 ± 0.37</td>
<td>0.92 ± 0.47</td>
<td>−1.0 ± 0.15</td>
<td></td>
</tr>
<tr>
<td>MARB</td>
<td>0.04</td>
<td>0.12</td>
<td>0.13</td>
<td>0.10</td>
<td>−1.0 ± 0.01</td>
<td>0.15 ± 0.73</td>
<td></td>
</tr>
<tr>
<td>DRES</td>
<td>0.07</td>
<td>0.09</td>
<td>0.07</td>
<td>0.22</td>
<td>−0.13</td>
<td>0.02 ± 0.70</td>
<td></td>
</tr>
<tr>
<td>SCF</td>
<td>0.28</td>
<td>0.29</td>
<td>0.21</td>
<td>0.03</td>
<td>0.02</td>
<td>0.18</td>
<td></td>
</tr>
</tbody>
</table>

\(^a\)Averages and SEs.
\(^b\)See ‘Table 2’ for abbreviations of the traits.
Table 5 異性質間の遺伝相関を示している。成長形質間の遺伝相関は一般に高かった。しかし、PFM と PRG 間における BWF と ADG の遺伝相関は、それぞれ0.85と0.61であった。PFM と PRG での ADG の相関は、Schleppi et al. (1994) によって推定されたスイスの検定計画における増体重の推定値より低かった。両検定における性別（雄牛と去勢牛）、飼育法（個別飼育あるいはグループ飼育）の違い、濃厚飼料の摂取制限（制限給餌または自由摂取）、経時月齢と検定期間の違いは、この低い遺伝相関の原因になっている可能性がある。

Table 5 Estimates of genetic correlations between the traitsa of the performance test and the progeny test

<table>
<thead>
<tr>
<th>Performance test</th>
<th>BWS</th>
<th>BWF</th>
<th>ADG</th>
<th>CONC</th>
<th>ROU</th>
<th>TCNV</th>
<th>TINT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progeny test</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BWS</td>
<td>1.00±0.00</td>
<td>1.00±0.00</td>
<td>0.93±0.13</td>
<td>0.73±0.21</td>
<td>0.12±0.19</td>
<td>-0.26±0.30</td>
<td>0.77±0.22</td>
</tr>
<tr>
<td>BWF</td>
<td>0.80±0.22</td>
<td>0.85±0.19</td>
<td>0.74±0.29</td>
<td>0.81±0.30</td>
<td>0.67±0.23</td>
<td>0.12±0.41</td>
<td>0.86±0.20</td>
</tr>
<tr>
<td>ADG</td>
<td>-0.53±0.23</td>
<td>0.62±0.25</td>
<td>0.61±0.37</td>
<td>0.66±0.29</td>
<td>0.81±0.23</td>
<td>0.22±0.45</td>
<td>0.73±0.32</td>
</tr>
<tr>
<td>REA</td>
<td>-0.53±0.88</td>
<td>-0.97±0.20</td>
<td>-0.92±0.62</td>
<td>0.10±1.21</td>
<td>-0.99±0.12</td>
<td>1.00±0.01</td>
<td>0.18±1.63</td>
</tr>
<tr>
<td>MARB</td>
<td>-0.36±0.36</td>
<td>0.38±0.35</td>
<td>0.70±0.31</td>
<td>-0.30±0.41</td>
<td>0.54±0.50</td>
<td>-0.85±1.22</td>
<td>-0.17±0.69</td>
</tr>
<tr>
<td>DRES</td>
<td>-0.16±0.47</td>
<td>-0.26±0.47</td>
<td>-0.72±0.32</td>
<td>0.47±0.46</td>
<td>-0.75±0.35</td>
<td>1.00±0.00</td>
<td>0.31±0.53</td>
</tr>
<tr>
<td>SCF</td>
<td>0.95±0.14</td>
<td>0.99±0.02</td>
<td>0.98±0.09</td>
<td>0.93±0.22</td>
<td>0.26±0.38</td>
<td>-0.68±0.42</td>
<td>0.98±0.12</td>
</tr>
</tbody>
</table>

aSee 'Table 2' for abbreviations of the traits.

© The Ito Foundation
産肉能力検定による和牛改良システムの分析

（1994b）によって報告された枝肉歩留まりと飼料摂取量間の負の遺伝的関係を一致していた。一方，DRES は，CONC と TINT との間で正の遺伝相関を示した。CONC と ROU 間の高い遺伝相関もかかわらず，それらと TCNV, DRES, MARB の間の遺伝的関係は CONC と ROU 間で異なっていた。そして理由は明らかではないが，CONC と ROU のこれらの相関は PFM における給餌方法の違いに関係があると思われる。つまり，個体ごとの給餌方法の変更や CONC に対する一貫性のない制限給餌の問題を示唆している。

TINT と体重に関する形質，ADG との間の遺伝相関は高かったのに対して，TINT と MARB 間の相関は低かった。これらの推定値は総説にある値（Koots et al., 1994b）と一致していた。SCF と TINT 間の遺伝相関は 1.0 に近かった。

TCNV と SCF 間には負の遺伝相関があるため，飼料効率の改良は皮下脂肪の増加をもたらす可能性がある。

MARB の遺伝相関は，BWS, BWF, CONC と TINT の間で低かったが，ADG と ROU では正の遺伝相関であった。MARB と ADG 間の遺伝相関は PRG における推定値より高かった。

弱い MARB と成長形質間の遺伝相関，および脂肪交雑と飼料摂取量間の遺伝相関は，総説にある値（Koots et al., 1994b）と一致した。

この品種では，MARB 平均の水準がすでに高いレベルに達しているが，この形質の高い遺伝率，大きな遺伝的変異，成長形質との正の遺伝的関係，SCF との弱い遺伝的関係が，存在した。従って，この結果は，MARB の改良の可能性が高いことを示唆した。

PFM の形質との MARB の好ましい遺伝的関係は，同じく PFM において雄牛の MARB 育種価の予測が雄牛の選抜に役立つかもしれないことを示唆した。しかし，シミュレーションを使った研究が育種プログラムの効率を調べるために必要である。

明確な遺伝的関係が MARB と飼料効率の間に得られなかった。本研究で明らかにできなかった遺伝的関係についての結論を得るためには，より一層の研究を行う必要がある。本研究では，飼料の種類別の分析より全飼料摂取量を考慮することが，遺伝的評価のためには良い選択であることを示唆した。しかし選抜計画で飼料別の摂取量測定の有用性を決定するためには，さらに分析を続けが必要がある。

4. 要 約

雄牛の個体ごとの能力検定（成長形質と飼料摂取量など，661頭）とその後代検定成績（屠体形質，去勢牛 535頭）をまとめたデータから遺伝的パラメータを推定するため，アニマルモデルをあてはめた制限尤値法による推定を行った。分析対象形質は，能力検定形質として濃厚飼料摂取量，粗飼料摂取量，TDN 要求率，TDN 摂取量，また後代検定形質としてロース芯面積，脂肪交雑評点，枝肉歩留まり，皮下脂肪厚である。このほかに成長形質として，検定開始時および終了時における体重，1 日平均増体重がある。推定された遺伝率は，上記の能力検定形質に対しては，それぞれ 0.18, 0.71, 0.11 および 0.36 であった。また後代検定形質に対しては，それぞれ 0.02, 0.49, 0.15 および 0.15 であった。成長形質では 0.20 から 0.38 の遺伝率が推定された 粗飼料摂取量と他の形質間の遺伝相関は，濃厚飼料摂取量と他の形質間の遺伝相関と異なっていた。おそらく能力検定における濃厚飼料の制限給餌法のふれに関連していると考えられる。TDN 摂取量と 1 日平均増体重，皮下脂肪厚間の遺伝相関は高かった。脂肪交雑評点は，成長形質と正の遺伝相関，粗飼料摂取量と皮下脂肪厚と低い遺伝相関を示した。脂肪
交雑評点に対する遺伝的改良の可能性が高いことが示された。

文 献
Dark cutting beef 発生に関わる性腺ホルモンの影響 2

Effects of Gonadal Hormones on Occurrence of Dark Cutting Beef 2

Masato Aoyama, Shoie Sugita and *Hiroaki Okamura
(Faculty of Agriculture, Utsunomiya University and
*National Institute of Agrobiological Sciences)

Sexual differences, and the effects of gonadal hormones on stress responses during road transportation in Shiba goat (Capra hircus) were investigated. In experiment 1, sexual differences in stress responses during road transportation were investigated. Both male and female goats were transported by a truck for one hour, and blood concentration of cortisol (Co), glucose (Glu) and free fatty acid (FFA) were measured. In addition, food intake following transportation was measured. Co level rose during transportation in both sexes, but female exhibited more remarkable rise than male. Glu and FFA level also rose during transportation, and there were no differences between male and female. Contrary to the results in blood Co level, food intake after transportation significantly decreased only in male. In experiment 2, the effects of gonadal hormones on stress responses during transportation were investigated. Castrated goats were administrated either of dihydrotestosterone (DHT), estradiol (Es) or cholesterol (Cho), and they were transported in the same manner as experiment 1. Co level rose during transportation in every groups, but that in DHT group was lower than in other two groups. Glu and FFA level also rose during transportation, and there are no remarkable effects of administrated hormones. Just like as the results in experiment 1, contrary to the results in blood Co level, food intake after transportation significantly decreased only in DHT administrated groups. In conclusion, 1) androgen blunts the response of HPA axis to stress, however, 2) androgen may weaken the recovery from stress.
トに関する報告の多さに比べ、家畜に与える種々のストレス反応に対する性腺ホルモンの影響については、ほとんど研究されていないのが現状である。そこで本研究は、昨年に引き続き、シバヤギを用い、輸送によるストレス反応の雌雄差、そしてそれに及ぼす性腺ホルモンの影響を調査した。

2. 材料と方法

2.1 実験1：輸送に伴うストレス反応の雌雄差

（1）供試動物：東京大学附属牧場より導入した健康な成熟シバヤギ、オス3頭メス5頭（13か月〜8年7か月齢、25〜35Kg）を供試した。動物は実験に供する少なくとも10日前から2.5×2.2mの個別箱にて飼育した。10:00〜16:00にルーセンを給与し、水は自由摂取とした。

（2）実験：対照実験として、輸送を負荷しない通常の飼育条件下でのデータ収集を行った。9:00より10:00までの間、動物の頭静脈より15分おきに採血を行い、10:00より通常どおり給餌を開始し、その後11:00、13:00、16:00に採血を行った。対照実験終了後、少なくとも1日の間隔をおき、軽トラックによる輸送実験を動物に負荷した。輸送は9:00から10:00の1時間とし、この間15分おきに採血を行った。輸送後は対照実験と同じ手順で給餌、採血を行った。血液は採取後遠心分離し、血漿中のコルチゾル（Co）、グルコース（Glu）、遊離脂肪酸（FFA）の濃度を測定した。また、供試動物のうちオス、メスそれぞれ1頭から、実験開始から約2時間、心拍数を連続的に測定した。さらに、給餌開始後1、3、6時間後（それぞれ11:00、13:00、16:00）に摂食量を測定した。これらのパラメータのオスとメスとの差を検討した。なお、オスのうち2頭は2回実験に供試し、のべ5頭の結果として解析した。

2.2 実験2: 輸送に伴うストレス反応に及ぼす性腺ホルモンの影響

（1）供試動物：シバヤギ去勢オース5頭（3年〜5年齢、30〜35Kg）を供試した。飼育条件等は、実験1と同じとした。

（2）実験：対照実験および輸送実験の手順等は実験1と同じとした。投与する性腺ホルモンは、アンドロジェンとしてジヒドロテストステロン（DHT）、エストログジェンとしてエストラジオール（Es）、対照としてコレステロール（Cho）を用いた。投与は、粉末状の性腺ホルモンを充填したシリコンガム製のカプセルを動物の皮下に留置することにより行った。各動物にいずれかの性腺ホルモンを投与し、実験を行った。1回の実験終了後、投与するホルモンを入れ替え、実験を3回繰り返し、各投与群（DHT群、Es群、Cho群）の差を検定した。測定したパラメータも、実験1と同様にした。

（3）測定方法および統計解析：動物から採取した血液をただちに遠心分離し（3000rpm、4℃、15分）、得られた血漿を−30℃で測定まで保存した。測定はいずれも市販の測定用キットを用いた。
心拍数の測定には、走馬用の心拍測定・記録装置を用いた。結果の統計解析には一元配置分散分析あるいは反復測定分散分析およびTukeyの検定を用いて、オスとメスの相関、投与した性腺ホルモンの効果等を検討した。

3. 結果と考察

【実験1】対照群における血中Co濃度はほぼ一定であったが、輸送群においては、輸送開始から急激に増加し、雌雄とともに45〜60分後に最大値を示した（Fig. 1A）。しかし、その程度はオスの方が低い傾向があり、輸送開始45分後の血中Co濃度において、オスとメスの間に有意差がみられた。

血中Glu濃度およびFFA濃度は、輸送群にお
のうち輸送時間の経過とともに増加した（Fig. 1B, C）。一方、輸送中のFFA濃度においてメスの方が高い傾向がみられたものの、Glu、FFA濃度のどちらも雌雄間有意差はなかった。

摂食量に関しては、対照群と輸送群の差を検定したところ、摂食開始3および6時間後に、オスでのみ輸送群において対照群よりも有意に減少していた（Table 1）。

【実験 2】輸送群における血中Co濃度は、輸送開始後急激に増加し、すべての群において45〜60分後に最大値を示したが、DHT群は他の2群に比べその増加の程度が低く、輸送開始30〜60分後には他の2群との間に有意な差がみられた（Fig. 2A）。

血中Glu濃度およびFFA濃度は、輸送時間の経過とともに増加した（Fig. 2B, C）。Cho, DHT, Esの各群間で差はみられなかった。

摂食量に関しては、対照群と輸送群の差を検定したところ、摂食開始3および6時間後に、DHT投与群と輸送群において対照群よりも有意に減少していた（Table 2）。

【心拍数】心拍数に関しては測定した個体数が
Table 1 The effect of transportation on following ingestive behavior in male and female goats. Fodder was given to animal just after the transportation had ended, and intaken food was measured on 1, 3 and 6 hours after fodder presentation. In “control” session, transportation was not performed.

<table>
<thead>
<tr>
<th>Sex</th>
<th>Period</th>
<th>Food Intake (g)</th>
<th>Control</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>1hr</td>
<td>428 ± 72.6</td>
<td>374 ± 142</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3hr</td>
<td>764 ± 148</td>
<td>622 ± 120*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6hr</td>
<td>1054 ± 194</td>
<td>874 ± 185*</td>
<td></td>
</tr>
<tr>
<td>Female</td>
<td>1hr</td>
<td>342 ± 94.4</td>
<td>306 ± 101</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3hr</td>
<td>528 ± 173</td>
<td>478 ± 138</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6hr</td>
<td>748 ± 253</td>
<td>692 ± 252</td>
<td></td>
</tr>
</tbody>
</table>

Values represent means ± SD of five animals for each sex.
* : Significant difference was seen between control and transportation (P<0.05).

Table 2 The effect of transportation on following ingestive behavior, and effects of gonadal hormones on it in castrated male goats. Each goat was administrated Cho, DHT or Es. See table 1 for detail experimental scheme. In “control” session, transportation was not performed.

<table>
<thead>
<tr>
<th>Administered Hormone</th>
<th>Period</th>
<th>Food Intake (g)</th>
<th>Control</th>
<th>Transport</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cho</td>
<td>1hr</td>
<td>490 ± 105</td>
<td>476 ± 119</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3hr</td>
<td>730 ± 132</td>
<td>676 ± 204</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6hr</td>
<td>1124 ± 342</td>
<td>1092 ± 357</td>
<td></td>
</tr>
<tr>
<td>DHT</td>
<td>1hr</td>
<td>486 ± 83.2</td>
<td>458 ± 70.1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3hr</td>
<td>792 ± 232</td>
<td>624 ± 145*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6hr</td>
<td>1028 ± 251</td>
<td>998 ± 163*</td>
<td></td>
</tr>
<tr>
<td>Es</td>
<td>1hr</td>
<td>526 ± 128</td>
<td>436 ± 81.7</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3hr</td>
<td>920 ± 144</td>
<td>818 ± 99.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>6hr</td>
<td>1132 ± 164</td>
<td>1138 ± 265</td>
<td></td>
</tr>
</tbody>
</table>

Values represent means ± SD of five animals for each administrated hormone. Cho : cholesterol, DHT : dihydrotestosterone, Es : estradiol
* : Significant difference was seen between control and transportation (P<0.05).

少ないので、ここで実験 1, 2 をまとめて記述する。オス、メス、去勢オスに DHT 投与、Es 投与で各一例ずつ、のべ 4 頭の心拍数を測定したが、いずれも輸送中は 80 回/分くらいの心拍数を示しており、対照群とほぼ同じレベルであった（Fig. 3）。一方、輸送が終了し、摂食開始とともに心拍数は約 130〜180 まで増加したが、4 例いずれにおいても、輸送終了後の心拍数は輸送を行わなかった对照実験時のそれと比較して、より高くなる傾向がみられた。現段階では、心拍数の雌雄差あるいは性腺ホルモンの影響は不明である。

【総合考察】輸送ストレスに伴う血中 Co 濃度の上昇は、雌雄ともに顕著であるものの、メスよりもオスの方が低く、また、去勢オスに DHT を投与した場合、輸送に伴う血中 Co 濃度の上昇が抑制された。これは昨年本報告書で報告した結果と一致し。アンドロジェンがストレス時の HPA 軸の活動を抑制すると言う薬効類での報告と類似していた。

輸送ストレスに伴い、血中 Glu および FFA 濃度は上昇した。Co は精新生を促進し、細胞のグルコース取り込みを抑制することにより血糖値を上昇させる作用があることが分かっているが、輸送による血中 Glu、FFA 濃度の上昇は、その上昇の早さおよび程度から、主に Co の作用ではなく、交感神経系の活動によるグリコーゲン分解や脂肪分解によるものであると推察される。ヤギにおいて輸送時には血中エピネフリン (EP) 濃度が上昇することが報告されている。また、今回、のべ 4 頭分の心拍数を測定した結果、対照実験時と輸送時に差はみられなかったが、輸送終了後にはどの例においても心拍数は輸送後の方が対照実験時よりも高かかったことからも、輸送により交感神経系が活動することが考えられた。しかし、血中 Glu、FFA 濃度のいずれにおいても雌雄差はみられず、また、実験 2 で、Cho, DHT, Es 各投与群間に差はみられなかった。少なくとも今回の条件下では、性腺ホルモンはストレスに対する交感神経系の活動に影響を及ぼさないものと考えられる。

輸送終了後の摂食量をみると、オスでのみ減少
Fig. 2 Effects of gonadal hormones in concentrations of blood cortisol (A), blood glucose (B) and blood FFA (C) during road transportation in castrated goats. Each goat was administrated Cho, DHT or Es. Shaded area on panel represents the period of transportation. In “control” session, transportation was not performed. Values represent means of five animals for each administrated hormone.

Cho: cholesterol, Cont.: control session, DHT: dihydrotestosterone, Es: estradiol, FFA: free fatty acid, Trans.: transportation session.

*: Significant difference was seen between administrated hormones (P < 0.05).
The effect of transportation on heart rate in goats. Shaded area on panel represents the period of transportation. Data was collected from one male (A), one female (B), and one castrated male when it was administered DHT (C) or Es (D). Plain and bold line represents the heart rate in control and transportation session, respectively. In "control" session, transportation was not performed. Feeding was started immediately after transportation. DHT: dihydrotestosterone, Es: estradiol.

Fig. 3

家畜に対するストレスが原因となっている様々な問題を解決できるかも知れない。

4. 要 約

シバヤギを用いてトラック輸送に伴うストレス反応の雌雄差およびそれに伴う性腺ホルモンの影響について検討した。まず，実験１ではストレス反応の雌雄差について検討した。雌雄両方に輸送を負荷し，血液中のコルチゾル（Co），グルコース（Glu），遊離脂肪酸（FFA）の濃度，および輸送終了後の摂食量を測定した。雌雄いずれも輸送に伴いCo濃度が上昇したが，その程度はオスの方がメスに比べ低かった。一方，GluおよびFFA濃度も上昇したが，雌雄間に差はなかった。摂食量に関しては，オスでのみ輸送を負荷した日の摂食量が減少していた。続く実験２では，ストレス反応に対する性腺ホルモンの影響について検討した。去勢オスに，ジヒドロテストステロン
(DHT), エストラジオール (Es), コレステロール (Cho) をそれぞれ慢性的に投与し、実験 1 と同じ手順で輸送を負荷した。いずれの投与群においても Co, Glu, FFA は輸送に伴い上昇したが，Co では DHT 群においてその上昇の程度が低かった。また，Glu および FFA に関しては，3 群間に差はみられなかった。一方，摂食量に関しては，DHT 投与群でのみ輸送によりその日の摂食量が減少していた。これらのことから，アン ドロジェンはストレス負荷時の反応を軽減しているが，負荷終了時の回復の過程を遅らせている可能性が示唆された。

文 献
The objective of this study was to develop a method for selective preparation of cis-9, trans-11 conjugated linoleic acid (c-9, t-11 CLA) by use of rumen bacterial culture. By rumen bacteria cultured in a medium containing sodium linoleate or free linoleic acid as a precursor at 38°C for 3 hours, c-9, t-11 CLA were successfully produced in the culture medium. On the other hand, trilinoleate was not satisfactory precursor for c-9, t-11 CLA preparation by rumen bacteria. Interestingly, a small amount of trans-10, cis-12 CLA (t-10, c-12 CLA) was also produced by the culture. Although c-9, t-11 CLA produced was gradually saturated to trans-vaccenic acid (t-vaccenic acid), t-10, c-12 CLA was remained increasing. These results might suggest that cis-9 double bond of c-9, t-11 CLA was saturated by Δ⁹-saturase expressed on the rumen bacteria. For selective preparation of c-9, t-11 CLA, pH of culture medium was important. In the low pH condition (i.e., pH 6.0–7.0), t-10, c-12 isomer was mainly produced, whereas c-9, t-11 isomer was preferentially produced in the high pH condition (i.e., pH 7.5–8.0). The production of t-vaccenic acid was higher in the low pH condition. Therefore, the lower yield of c-9, t-11 CLA might result from saturation of the fatty acid by bacteria was activated. The present results suggest that the c-9, t-11 CLA production by use of rumen bacteria requires satisfactory precusor and regulation of saturation against unsaturated fatty acids.
-11 異性体 (c-9, t-11 CLA) および trans-10, cis-12 異性体 (t-10, c-12 CLA) がほぼ一定の割合で生成する。

近年, 共役リノール酸研究の進展に伴い, CLA 異性体ごとにその生理作用が異なっているということが明らかになってきた。すなわち、体脂肪率低下作用や免疫系活性化作用は t-10, c-12 異性体が有しており、抗がん作用や成長促進作用は c-9, t-11 異性体によるものであることが報告されている。これは、CLA 異性体の混合物より t-10, c-12 CLA のみを高純度で結晶化する技術が開発されたことにより、明らかとなった知見である。しかし、c-9, t-11 CLA に関しては、現在のところ有効な合成法が開発されていない。

反芻家畜由来食品に含有されている CLA の大半は c-9, t-11 異性体であることが知られている）。これに倣いては、反芻家畜の CLA がルーメン微生物により生合成されていることに起因していると考えられる。そこで本研究では、ルーメン微生物を利用して、c-9, t-11 CLA 選択的な合成法を考案することを目標とした。

2. 材料および方法

2.1 ルーメン微生物の採取および培養

アルファルファ・ヘイキューブを給餌したフィストラ装着ヤギ（オス、10歳）よりルーメン液を採取した。3 層ガーゼでろ過することでルーメン液中の固形物を除去し、Tilley と Terry の方法22)に準じてルーメン微生物の培養を行った。培養液には、CLA の前駆脂肪酸であるリノール酸は遊離リノール酸、リノール酸ナトリウムあるいはトリリノレートとして培養チューブあたり 5 mg 添加した。38℃で一定時間培養した後、培養液を回収し、直ちに脂肪酸分析に供した。

2.2 脂肪酸分析

培養上清からの総脂質の抽出は Bligh と Dyer の方法23)に準じて行った。重量法により抽出した総脂質中の脂質含量を測定した後、Takeno-yama らの方法24)に準じて、脂肪酸メチルエステルの調製を行い、キャピラリー GC 分析に供した。脂肪酸の定量はトリコサ酸 (C23:0) を用いた内部標準法により行った。

3. 結果と考察

リノール酸ナトリウムを添加した培養液中で、フィストラ装着ヤギより採取したルーメン微生物を最長 3 時間まで培養した。培養開始からリノール酸は経時的に減少し、それに換わり、CLA が生成した。CLA の生成は培養開始後、2 時間まで増加した。しかし、培養開始から 3 時間後にはわずかに減少する傾向を示した（Fig. 1）。生成した CLA は c-9, t-11 異性体のみでなく、t-10, c-12 異性体も含めていたが、c-9, t-11 CLA の生成量は、t-10, c-12 CLA のそれより 5 倍以上多かった。Kepler と Tove はヒツジのルーメン内より採取したセルロース分解菌、Bathyri-brio fibrisolvents より Linoleate 4'-cis, 4''-cis, 4''-cis, 4''-cis を含む CLA の合成を行った。
trans-isomerase を単離・精製したことを報告した。本研究にて、リノール酸から c-9, t-11 CLA を生成した細菌が B. fibrisolvens であるかは不明であるが、ヤギルーメン内に LINOLEATE 12-cis, 11-trans-isomerase を発現する細菌が棲息していることが示された。また、わずかではあるものの t-10, c-12 CLA が生成した事実から、Linoleate 12-cis, 11-trans-isomerase による異性化が12位の二重結合のみでなく9 位の二重結合にも及ぶか、あるいはヤギルーメン内には Linoleate 9-cis, 10-trans-isomerase を発現する微生物が存在するという可能性が示唆された。

また、培養時間が延長するに伴い、trans-パクセン酸 (trans-7-octadecenoic acid) の増加も観察された (Fig. 2)。これは、c-9, t-11 CLA の生成にともないパクセン酸の生成量が増加したことから、c-9, t-11 CLA の cis-9 位の二重結合が飽和化されたものであろうと考えられた。このことから、実際の c-9, t-11 CLA の生成量は更に多いものと考えられたが、培養液中で CLA の飽和化が同時に進行していることが推察された。それ故、c-9, t-11 CLA の収量を上げるためには、飽和化を抑制することも重要であると推察された。

CLA の前駆脂肪酸であるリノール酸を遊離脂肪酸あるいはトリグリセリドの形で培養液に添加した場合、CLA の生成量はトリグリセリドよりも遊離脂肪酸からの方が多くなった (Fig. 3)。しかしながら、遊離脂肪酸からの生成量はナトリウム塩の場合の 2/3 程度にとどまった。このことは、リノール酸の水溶性が高まることで、おそらく細菌が菌体外に発現している Linoleate 12-cis, 11-trans-isomerase とリノール酸酵素系基質複合体を形成しやすくなったことに起因しているものと考えられた。

リノール酸ナトリウムの共存下、弱酸性から弱アルカリ性まで pH を調整した培養液中でルームン微生物を培養すると、細菌により生合成された

![Fig. 2](image_url)
Fig. 2 Vaccenic acid produced in the same medium as Fig. 1.

![Fig. 3](image_url)
Fig. 3 CLA production from rumen bacteria cultured in the medium containing free linoleate or trilinoleate.

- □ c-9, t-11 CLA, - • t-10, c-12 CLA,
- △ other CLAs
CLAの量に特徴的な変化が認められた（Fig. 4）。すなわち、pH6.5〜7.0の弱酸性域では主にt-11、c-12 CLAが生成したのに対し、pH7.5〜8.0の弱アルカリ性域ではc-9、t-11 CLAが優勢に生成した。KeplerとToveはLinoleateのcis、trans-isomeraseの至適pHは7.0〜7.2と報告している3)。このことから、ルーメン微生物によるc-9、t-11 CLA合成量の多少は単に異性化酵素の至適pHに依存してはいないということを示唆された。

興味深いことに、弱酸性下でのt-10、c-12 CLAの生成量と、弱アルカリ性下でのc-9、t-11 CLAの生成量を比較すると、t-10、c-12 CLAの方が遙かに多量に生成されていた。このことについての原因は不明であるが、t-10、c-12 CLA生成量の圧倒的な増大から、弱酸性域にpHを持つLinoleate cis、trans-isomeraseが存在することが強く示唆された。

培養液のpHが弱酸性域のとき、t-パクセン酸の生成量が少くなる傾向が観察された（Fig. 5）。このことから、弱酸性条件下ではc-9、t-11 CLAの飽和化が促進され、リノール酸より生成したc-9、t-11 CLAが速やかにt-パクセン酸に変換されてしまうものと推察された。この反応に関与する微生物起源の飽和化酵素（cis-saturation）に関する知見は少ないが、おそらく弱酸性域にpHを持つ酵素であることが推察された。

このことからも、培養ルーメン微生物によるCLA合成の試みにおいては、CLAの飽和化反応を抑制することが重要であるということが、再度、確認された。

以上の結果より、ルーメン微生物を用いたc-9、t-11 CLA合成には、CLAの合成とその飽和化という2つの過程が存在し、その両者のバランスによりその収量が左右されるということが示唆された。

Fig. 4 Effect of pH on production of CLA isomers from rumen bacteria culture.
- ■ c-9, t-11 CLA, ● t-10, c-12 CLA,
- ▲ other CLAs

Fig. 5 Vacenic acid production depended upon the medium pH.
- ■ pH6.0, ● pH6.5, ▲ pH7.0,
- ■ pH7.5, ● pH8.0.
された。合成および飽和化には培養液の pH が大きく関与することが推測され、c-9, t-11 CLA の飽和化は弱酸性条件下において促進されるものと推察された。また、ルーメン微生物により t-10, c-12 異性体も生合成されることが確認されたことから、これら CLA 異性体を選択的に合成できる可能性も示された。これらの結果は、工業的な CLA 製造だけでなく、食肉生産においても家畜の飼養形態や飼料構成により CLA を多量に含有する牛肉を生産できる可能性を示すものである。今後、さらに詳細な検討を行い、研究成果の応用を図りたい。

4. 要 約

ルーメン内微生物による c-9, t-11 CLA の選択的調製法を確立するための基礎的研究を行った。ヤギ第一胃より採取したルーメン微生物を種々の化学構造を有するリノール酸と共に培養したところ、リノール酸ナトリウムおよび遊離リノール酸を添加した場合に、c-9, t-11 CLA 生成したが、同時に t-10, c-12 CLA も生成することが示された。弱酸性 pH の培地中では c-9, t-11 CLA の飽和化反応が促進されるため、弱アルカリ性培地の方が c-9, t-11 CLA の生成量が多くなった。ルーメン微生物による CLA 合成には添加する前駆脂肪酸の化学構造および生成した CLA の飽和化を抑制することが重要であることが示唆された。

文 献
Study on Conjugated Linoleic Acid Formation in the Rumen and Transfer to Beef

Keiichi Tanaka (Graduate School of Agriculture, Hokkaido University)

Effects of dietary supplement of safflower oil, safflower seed or linseed oil on the generation of conjugated linoleic acid (CLA) in the rumen were investigated. Four Corridale sheep fitted with rumen fistula were used in a 4×4 Latin square design with each 2 week period. Fat sources were added at the expense of concentrates at 30% level on weight basis. Dietary treatment were 100% concentrates (served as the control), 70% concentrates and 30% safflower seed (SFS), 70% concentrates, 18% safflower meal and 12% safflower oil (SFO) or 70% concentrates, 18% safflower meal and 12% linseed oil (LNO). The ratio of a roughage to concentrates were 7to3. At the end of each treatmental period, rumen contents from each sheep were collected for determining the fatty acid composition.

Results obtained were summarized as follow; 1) The levels of CLA in rumen content were significantly increased in three treatmenal groups relative to the control. The increase in CLA was greater in SFS and SFO groups than in LNO group. 2) The generation of trans-11C_{18:1} was markedly higher in three treatmenal groups than that of the control. It reached the maximum value at 3 or 6h after feeding. 3) The rates of CLA and trans-11C_{18:1} in SFS and SFO groups were gradually decreased from 3h after feeding.

1. 目的

共役リノール酸（Conjugated linoleic acid, CLA）はリノール酸の位置および幾何異性体の総称であり、自然界では反芻家畜に由来する畜産物（牛乳や牛肉など）に含有していることが知られている4-6）。近年、CLA に抗ガン活性が確認されて以来4-7）、血中 LDL-コレステロールの低下および抗アテローム性動脈硬化作用9）、免疫機能促進8-10）、体蓄積脂肪減少11-12）、増体重および飼料効率の改善13）など種々の生理作用が報告されている。反芻家畜の第一胃内ではリノール酸やα-リノール酸などの高度不飽和脂肪酸は微生物によって水素添加されており14）、水素添加の際、まずシス型、トランス型の位置および幾何異性体に変化させてから水素添加がなされる15,16）。そのためリノール酸の水素添加過程の中間物質である CLA（主に cis-9, trans-11C_{18:2} がそれ以上の水素添加を避けて下部消化管に運ばれ、吸収されて体脂肪やミルク中に移行するためであろう。従来、CLA は高度不飽和脂肪酸の水素添加過程の中間物質として重要視されていなかったため、第
一胃内での CLA 生成に関する報告は少ない。第一胃内での不飽和脂肪酸の水素添加の程度は油脂の添加量や形態、また飼養条件などによって異なり、CLA 生成量も大きく影響を受けることが考えられる。そこで本研究では、高度不飽和脂肪酸を多く含有する油脂を異なった形態で反芻動物に給与し、第一胃内での不飽和脂肪酸への水素添加に及ぼす影響、特に、CLA 生成に及ぼす影響を検討した。

2. 材料および方法

2.1 供試動物とその管理
第一胃フィステルを装着した豚（コリデール種、5 歳齢、平均体重71.1±3.6kg）4 頭を供試した。実験は次に示す 4 处理を設け、4×4 ラテン方格法で行った。
処理区
100%市販の配合飼料（対照区）
70%市販の配合飼料 +
30%サラワール油種子（SFS 区）
70%市販の配合飼料 + 18.6%サラワール粕 +
11.4%サラワール油（SFO 区）
70%市販の配合飼料 + 18.6%サラワール粕 +
11.4%亜麻仁油（LNO 区）
各処理区の飼料中脂肪含量は等しくなるように配合した。市販の配合飼料は乳牛育成用配合飼料（モンスター-16、メルシャン株式会社）を用い、TDN と DCP 含量はそれぞれ 73.5％と 14.0％である。SFS 区はサラワール油を種子として、SFO 区は油脂として給与した。Table 1 にサラワール油と亜麻仁油の脂肪酸組成を示した。すべての処理区で粗飼料と配合飼料を 7：3 の割合で、毎朝、8：30 に給与した。飼料給与量は供試動物の体重の 1.5% とした。粗飼料としてオーチャードグラス、白草を細切して給与した。各処理区を 2 週間とし、水と飼料は自由に摂取した。

Table 1 Fatty acid compositions of safflower and linseed oils.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Safflower oil</th>
<th>Linseed oil</th>
</tr>
</thead>
<tbody>
<tr>
<td>C16:0</td>
<td>7.76</td>
<td>8.07</td>
</tr>
<tr>
<td>C18:0</td>
<td>2.44</td>
<td>3.23</td>
</tr>
<tr>
<td>C18:1</td>
<td>17.39</td>
<td>18.95</td>
</tr>
<tr>
<td>C18:2</td>
<td>61.89</td>
<td>14.18</td>
</tr>
<tr>
<td>C18:3</td>
<td>0.35</td>
<td>50.85</td>
</tr>
</tbody>
</table>

2.2 サンプルの採取と分析方法
各処理区の最終日に、飼料給与前と給与 1, 3, 6 および12時間後に第一胃フィステルから第一胃内容物を採取し、よく摂押した後、約 25mL をチューブに取り、液体窒素で速やかに凍結し、分析まで-80℃で保存した。第一胃内容物を解凍した後、Folch らの方法で総脂質を抽出した。総脂質から薄層クロマトグラフィーによって遊離脂肪酸を分画し、メチルエステル化した後、ガスクロマトグラフィー (GC-14B SHIMAZU LTD) を用いて脂肪酸組成を測定した。

2.3 統計分析
実験結果は SAS (1989) を用いて統計分析を行った。一般化線形モデル (GLM) により、各サンプル採取時間での処理間での違いを、また各処理区における経時的な変化を検討した。有意差が観察されたものは Duncan の多重検定法によって有意性を検討した。

3. 結 果
実験期間を通して供試した豚は元気であり、実験終了時の体重は 73.8±4.8kg であり実験開始前の体重（71.1±3.6kg）と変わりなかった。
各処理区の第一胃内容物中遊離型脂肪酸箇分の主要な脂肪酸組成の経時的な変化を Table 2 から 5 に示した。対照区では、trans-11C 18:1、cis-9C 18:1 の比率は、ともに飼料給与 1 時間後有意に増加し、6 時間後まで増加が続いた。CLA 比率
Table 2

Major Fatty acid composition of unesterified fatty acid fraction in content of the rumen before and at various times after sheep given the control diet.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Before feeding</th>
<th>Time after feeding (h)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>C16:0†</td>
<td>10.78±1.37</td>
<td>14.21±3.19</td>
<td>13.51±2.15</td>
</tr>
<tr>
<td>C18:0</td>
<td>42.22±6.51</td>
<td>41.96±2.92</td>
<td>44.40±6.01</td>
</tr>
<tr>
<td>trans-11C18:1</td>
<td>4.43±0.57b</td>
<td>6.76±0.86a</td>
<td>7.13±0.62a</td>
</tr>
<tr>
<td>cis-9C18:1</td>
<td>1.97±0.29ab</td>
<td>4.13±0.51a</td>
<td>4.06±0.32a</td>
</tr>
<tr>
<td>CLA</td>
<td>0.53±0.23b</td>
<td>1.76±0.63a</td>
<td>1.48±0.25bb</td>
</tr>
<tr>
<td>C18:3</td>
<td>1.76±0.88</td>
<td>0.88±0.10</td>
<td>1.06±0.20</td>
</tr>
<tr>
<td>Total SFA</td>
<td>53.00±7.64</td>
<td>56.17±5.92</td>
<td>54.91±7.06</td>
</tr>
<tr>
<td>Total MUFA</td>
<td>6.40±0.85ab</td>
<td>10.89±1.30b</td>
<td>11.18±0.83a</td>
</tr>
<tr>
<td>Total PUFA</td>
<td>2.29±1.10</td>
<td>2.64±0.72</td>
<td>2.54±0.44</td>
</tr>
<tr>
<td>C18:0/</td>
<td>9.42±0.55a</td>
<td>6.39±0.48c</td>
<td>6.30±0.78c</td>
</tr>
<tr>
<td>trans-11C18:1</td>
<td>12.04±2.56c</td>
<td>16.37±1.77b</td>
<td>21.53±3.77a</td>
</tr>
<tr>
<td>cis-9C18:1</td>
<td>3.77±0.27bc</td>
<td>5.68±0.66a</td>
<td>6.18±0.66a</td>
</tr>
<tr>
<td>CLA</td>
<td>0.45±0.17bc</td>
<td>3.37±0.79a</td>
<td>2.15±0.80ab</td>
</tr>
<tr>
<td>C18:3</td>
<td>0.66±0.06</td>
<td>0.43±0.09</td>
<td>0.54±0.10</td>
</tr>
<tr>
<td>Total SFA</td>
<td>70.94±3.45</td>
<td>60.50±2.23</td>
<td>55.94±5.20</td>
</tr>
<tr>
<td>Total MUFA</td>
<td>13.33±0.88bc</td>
<td>22.05±1.89ab</td>
<td>27.70±3.98b</td>
</tr>
<tr>
<td>Total PUFA</td>
<td>1.11±0.13bc</td>
<td>3.79±0.76a</td>
<td>2.69±0.70ab</td>
</tr>
<tr>
<td>C18:0/</td>
<td>5.82±1.06</td>
<td>3.16±0.37b</td>
<td>2.37±0.50b</td>
</tr>
</tbody>
</table>

Mean±SE

1Number of carbon atoms: number of double bonds.

CLA = cis-9, trans-11C18:2 + trans-9, cis-11C18:2

Total SFA (sum of saturated fatty acids) = C16:0 + C18:0

Total MUFA (sum of monounsaturated fatty acids) = trans-11C18:1 + cis-9C18:1

Total PUFA (sum of polyunsaturated fatty acids) = CLA + C18:3

NS = not significant

ab, bc Mean values in the same horizontal column having different superscips letters are significantly different from one another (P<0.05).

Table 3

Major fatty acid composition of unesterified fatty acid fraction in content of the rumen before and at various times after sheep given the safflower seed diet.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Before feeding</th>
<th>Time after feeding (h)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>%</td>
<td></td>
</tr>
<tr>
<td>C16:0†</td>
<td>8.90±0.80</td>
<td>10.64±0.89</td>
<td>10.01±1.00</td>
</tr>
<tr>
<td>C18:0</td>
<td>62.04±2.72ab</td>
<td>49.86±2.03b</td>
<td>45.93±5.04b</td>
</tr>
<tr>
<td>trans-11C18:1</td>
<td>12.94±2.56b</td>
<td>16.37±1.77b</td>
<td>21.53±3.77a</td>
</tr>
<tr>
<td>cis-9C18:1</td>
<td>3.77±0.27bc</td>
<td>5.68±0.66a</td>
<td>6.18±0.66a</td>
</tr>
<tr>
<td>CLA</td>
<td>0.45±0.17bc</td>
<td>3.37±0.79a</td>
<td>2.15±0.80ab</td>
</tr>
<tr>
<td>C18:3</td>
<td>0.66±0.06</td>
<td>0.43±0.09</td>
<td>0.54±0.10</td>
</tr>
<tr>
<td>Total SFA</td>
<td>70.94±3.45</td>
<td>60.50±2.23</td>
<td>55.94±5.20</td>
</tr>
<tr>
<td>Total MUFA</td>
<td>13.33±0.88ab</td>
<td>22.05±1.89ab</td>
<td>27.70±3.98b</td>
</tr>
<tr>
<td>Total PUFA</td>
<td>1.11±0.13bc</td>
<td>3.79±0.76a</td>
<td>2.69±0.70ab</td>
</tr>
<tr>
<td>C18:0/</td>
<td>5.82±1.06</td>
<td>3.16±0.37b</td>
<td>2.37±0.50b</td>
</tr>
</tbody>
</table>

Mean±SE

1Number of carbon atoms: number of double bonds.

CLA = cis-9, trans-11C18:2 + trans-9, cis-11C18:2

Total SFA (sum of saturated fatty acids) = C16:0 + C18:0

Total MUFA (sum of monounsaturated fatty acids) = trans-11C18:1 + cis-9C18:1

Total PUFA (sum of polyunsaturated fatty acids) = CLA + C18:3

NS = not significant

ab, bc Mean values in the same horizontal column having different superscips letters are significantly different from one another (P<0.05).
Table 4 Major fatty acid composition of unesterified fatty acid fraction in content of the rumen before and at various time after sheep given the safflower oil diet.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Before feeding</th>
<th>Time after feeding (h)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>C16 : 0(^1)</td>
<td>9.85 ± 1.42</td>
<td>11.24 ± 0.52</td>
<td>10.14 ± 0.75</td>
</tr>
<tr>
<td>C18 : 0</td>
<td>54.46 ± 4.79(^a)</td>
<td>46.93 ± 2.90(^bc)</td>
<td>39.55 ± 4.34(^d)</td>
</tr>
<tr>
<td>Trans-11C18 : 1</td>
<td>12.79 ± 1.71(^d)</td>
<td>18.53 ± 2.21(^c)</td>
<td>27.03 ± 4.02(^a)</td>
</tr>
<tr>
<td>cis-9C18 : 1</td>
<td>3.16 ± 0.20(^a)</td>
<td>6.63 ± 0.25(^ab)</td>
<td>7.33 ± 0.49(^a)</td>
</tr>
<tr>
<td>CLA</td>
<td>0.42 ± 0.07(^c)</td>
<td>3.56 ± 0.67(^b)</td>
<td>1.88 ± 0.34(^b)</td>
</tr>
<tr>
<td>C18 : 3</td>
<td>0.60 ± 0.05</td>
<td>0.49 ± 0.05</td>
<td>0.48 ± 0.12</td>
</tr>
<tr>
<td>Total SFA</td>
<td>64.31 ± 6.11(^a)</td>
<td>58.17 ± 2.63(^c)</td>
<td>49.70 ± 4.88(^c)</td>
</tr>
<tr>
<td>Total MUFA</td>
<td>15.95 ± 1.76(^c)</td>
<td>25.16 ± 2.40(^c)</td>
<td>34.36 ± 4.47(^a)</td>
</tr>
<tr>
<td>Total PUFA</td>
<td>1.02 ± 0.04(^c)</td>
<td>4.05 ± 0.70(^b)</td>
<td>2.36 ± 0.70(^a)</td>
</tr>
<tr>
<td>C18 : 0/(trans-11)C18 : 1</td>
<td>4.54 ± 0.86(^a)</td>
<td>2.71 ± 0.49(^b)</td>
<td>1.67 ± 0.47(^c)</td>
</tr>
</tbody>
</table>

Mean ± SE
\(^1\)Number of carbon atoms: number of double bonds.
CLA = cis-9, trans-11C18 : 2 + trans-9, cis-11C18 : 2
Total SFA (sum of saturated fatty acids) = C16 : 0 + C18 : 0
Total MUFA (sum of monounsaturated fatty acids) = trans-11C18 : 1 + cis-9C18 : 1
Total PUFA (sum of polyunsaturated fatty acids) = CLA + C18 : 3
NS = not significant
\(^{ab, c}\) Mean values in the same horizontal column having different superscripts letters are significantly different from one another (\(P < 0.05\)).

Table 5 Major fatty acid composition of unesterified fatty acid fraction in content of the rumen before and at various time after sheep given the linseed oil diet.

<table>
<thead>
<tr>
<th>Fatty acid</th>
<th>Before feeding</th>
<th>Time after feeding (h)</th>
<th>(P)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>C16 : 0(^1)</td>
<td>10.80 ± 1.85</td>
<td>10.42 ± 0.95</td>
<td>10.16 ± 0.94</td>
</tr>
<tr>
<td>C18 : 0</td>
<td>54.31 ± 0.63(^a)</td>
<td>45.40 ± 3.74(^c)</td>
<td>38.39 ± 2.12(^cd)</td>
</tr>
<tr>
<td>Trans-11C18 : 1</td>
<td>11.48 ± 1.75(^a)</td>
<td>13.24 ± 1.17(^a)</td>
<td>18.62 ± 1.48(^b)</td>
</tr>
<tr>
<td>cis-9C18 : 1</td>
<td>5.01 ± 0.52(^c)</td>
<td>7.55 ± 0.24(^b)</td>
<td>8.75 ± 0.76(^c)</td>
</tr>
<tr>
<td>CLA</td>
<td>0.70 ± 0.17(^b)</td>
<td>2.12 ± 0.41(^a)</td>
<td>1.72 ± 0.38(^b)</td>
</tr>
<tr>
<td>C18 : 3</td>
<td>0.74 ± 0.11</td>
<td>0.58 ± 0.09</td>
<td>0.42 ± 0.07</td>
</tr>
<tr>
<td>Total SFA</td>
<td>65.10 ± 1.57(^a)</td>
<td>55.82 ± 3.04(^bc)</td>
<td>48.55 ± 2.33(^c)</td>
</tr>
<tr>
<td>Total MUFA</td>
<td>16.49 ± 2.24(^d)</td>
<td>20.79 ± 1.37(^a)</td>
<td>27.37 ± 2.23(^b)</td>
</tr>
<tr>
<td>Total PUFA</td>
<td>1.43 ± 0.26</td>
<td>2.69 ± 0.48</td>
<td>2.12 ± 0.30</td>
</tr>
<tr>
<td>C18 : 0/(trans-11)C18 : 1</td>
<td>5.13 ± 0.88(^a)</td>
<td>3.57 ± 0.57(^b)</td>
<td>2.12 ± 0.27(^c)</td>
</tr>
</tbody>
</table>

Mean ± SE
\(^1\)Number of carbon atoms: number of double bonds.
CLA = cis-9, trans-11C18 : 2 + trans-9, cis-11C18 : 2
Total SFA (sum of saturated fatty acids) = C16 : 0 + C18 : 0
Total MUFA (sum of monounsaturated fatty acids) = trans-11C18 : 1 + cis-9C18 : 1
Total PUFA (sum of polyunsaturated fatty acids) = CLA + C18 : 3
NS = not significant
\(^{abc}\) Mean values in the same horizontal column having different superscripts letters are significantly different from one another (\(P < 0.05\)).
は飼料給与1時間後では有意に増加したが、その後、徐々に減少し、12時間後では飼料給与前と同様値まで低下した。C_18:0およびC_18:3の比率はほとんど変化が観察されなかった。SFS区では、C_18:0の比率は飼料給与1時間後から低下し、6時間後まで続き、12時間後では給与前値に近づいた。Trans-11C_18:1の比率は対照区と同様な経時的な変化を示したが、いずれの時間においても著しく高く、また飼料給与3時間後までの増加も大きく、その後、ゆるやかに減少したが、12時間後でも高い値だった。cis-9C_18:1の比率は飼料給与によって1から6時間後まで高い値を示した。CLA比率も対照区と同様な経時的な変化を示したが、対照区に比べて高い値で推移した。SFO区においても、trans-11C_18:1、cis-9C_18:1およびCLAの比率は、SFS区と同様の傾向を示したが、飼料給与3時間後、trans-11C_18:1はSFA区より高い値で、CLAは低い値で推移した。LNO区においても、SFS区と同様の推移を示したが、飼料給与後のCLAの増加程度はSFA区やSFO区より小さかった。C_18:3の比率はいずれの処理区においても飼料給与後の経時的な変化が少なく、また処理間で違いが観察されなかった。

4. 考察

本研究において、第一胃内のCLA比率はリノール酸を多く含有しているサララワオ油および種子を給与した。SFO区とSFS区で対照区やLNO区に比べて高かった。Kellyらが8)は泌乳中乳牛にビーナツ油（C_18:2を多く含有）、ひまわり油（C_18:0を多く含有）、亜麻仁油（C_18:3を多く含有）を給与したとき、ひまわり油を給与したときに牛乳中CLA含量が最も高かったという報告、また、Dhimanら19)は乳牛に4.4％亜麻仁油を給与したときより3.3％大豆油（C_18:2を多く含有）を給与したときの方が牛乳中のCLA含量が高く、牛乳中のCLAレベルを増加するには、α-リノレン酸を多く含有する亜麻仁油より、リノール酸を多く含有している大豆油の方が効果があることを報告している。これらの報告は本研究の結果から説明できるであろう。反芻動物によって摂取されたリノール酸の多くは第一胃内微生物によって異性化され、CLA（cis-9, trans-11C_18:1）に変えられてから水素添加を受けtrans-11C_18:1になり、さらに水素添加を受けてC_18:0になる14-16)。本研究では、SFA区、SFO区のいずれもCLA比率は飼料給与1時間後に最高値を示し、その後は減少しており、リノール酸からのCLAへの異性化は比較的速やかにされ、さらにCLAのcis-9に水素添加されてtrans-11C_18:1に速やかに変換されることが推察される。また、trans-11C_18:1の比率がCLAのそれよりも相当高いことからtrans-11C_18:1からC_18:0への水素添加はCLAからtrans-11C_18:1への水素添加よりゆっくりとされるのかもしれない。一方、α-リノレン酸はcis-9, trans-11, cis-15C_18:3に異性化された後、水素添加を受けてtrans-11, cis-15C_18:2になり、さらに水素添加を受けてtrans-11C_18:1を経てC_18:0になるので14-16)、本研究において、亜麻仁油給与によっても、trans-11C_18:1比率が増加したのであろう。

最近、第一胃内で生成されたtrans-11C_18:1が下部消化管より吸収され、生体内の組織内で4-9不飽和化酵素によってCLAに変換され、牛乳や牛肉中に移行するのではないかとの報告がある20, 21)。もちろんあるも第一胃内においてCLAだけでなく、trans-11C_18:1の生成も増加させることができるなら、牛乳や牛肉中のCLA含量を高くすることが可能になるだろう。Aiiら22)は亜麻仁油給与によって牛乳中のCLA含量が増加したのは亜麻仁油中にリノール酸が含まれているためであろうとしているが、亜麻仁油を給与す
5. 要約

脂肪酸組成あるいは形態の異なる油脂を飼料中に添加給与したときの反芻家畜の第一胃内におけるCLA生成に及ぼす影響を検討した。第一胃内フィステルを装着したミンシく豚を供試し、次の4処理、対照区、サフラワー油給与（SFO区）および亜麻仁油給与（LNO区）を4×4 ラテン方格法で実験を行った。1処理期間を2週間とし、いずれの処理区においても粗飼料、濃厚飼料を7：3の比で給与し、各処理区の最終日に第一胃フィステルから第一胃内容物を採取し、遊離型脂肪酸画分の脂肪酸組成を測定した。

実験結果は、1) 第一胃内CLA比率は、すべての処理区で対照区より高くなり、給与1時間後に最高値を示した。その増加はLNO区よりSFSおよびSFO区の方が大きかったが、3時間後には対照区やLNO区と同じ値まで低下した。

2) trans−11C比率は、3処理区で対照区より高い値で推移した。また、最高値は3あるいは6時間後に観察され、CLAより遅かった。

3) SFSおよびSFO区ではCLAおよびtrans−11C比率は給与3時間以後徐々に減少した。

文献
116

筋形成過程の骨格筋細胞での
ミオシンアイソフォーム発現の制御

Regulation of Myosin Isoform Expression in Skeletal Muscle Cells during Myogenesis

山口 高弘 ・ 吉澤 大輔 ・ 今中 崇博 ・ 奈良 英利 ・ 渡邊 康一
（東北大学大学院農学研究科）

Takahiro Yamaguchi, Daisuke Yoshizawa, Takahiro Imanaka, Hidetoshi Nara and Kouichi Watanabe
（Graduate School of Agricultural Science, Tohoku University）

In the regenerating M. longissimus thoracis of bovine and M. masseter of ovine induced by frost-bite, the expression of myosin heavy chain (MyHC) isoforms was detailed by immunohistochemical staining to characterize differentiating muscle fibers and to assess the transformation of muscle fiber type. The myoblasts immunoreacted for antibodies of βslow-type MyHC (MyHC-slow), fast-type MyHC (MyHC-fast) and developmental-type MyHC (MyHC-dev) occurred in the degenerative and regenerative areas of bovine and ovine muscle. Throughout the subsequent regeneration of muscle by 60 days in ovine, immature myotubes with MyHC-slow, MyHC-fast and MyHC-dev were first detected at 5 and 10 days of the regeneration. They all differentiated intermediate fibers to express both of MyHC-slow and MyHC-fast on day 30. Finally, the regenrated M. masseter was completely composed by type I fibers as same as an uninjured counterpart. Intermediate fibers heterogeneously expressed the MyHC isoforms, and then enhanced MyHC-slow expression and declined MyHC-fast expression as they differentiated. The present study clearly demonstrated that the expression of MyHC isoforms changes from MyHC-fast to MyHC-slow during type I fiber generation in M. masseter. The findings indicate that the myoblast-specific expression of MyHC isoforms controls the expression of MyHC isoforms in myotubes following the fusion.

1. 目的

骨格筋の筋形成は、筋芽細胞の増殖・分化、筋芽細胞の融合（筋管の形成）、筋線維（筋細胞）の成熟の3現象に大別される。この一連の現象は、培養系でも再現可能であり、我々は、ウシ、ブタ筋芽細胞の筋形成培養システムを確立した[1−3]。一方、筋線維型筋細胞でのミオシン重鎖（Myosin Heavy Chain：MyHC）アイソフォームの発現とその構成割合によって決定される[4−5]。従って、筋形成の培養システムにおいて、分化程度の異なる筋細胞レベルでMyHCアイソフォームの出現を的確に把握できれば，筋線維型とその決定機序の解析が可能になる。

昨年の研究ではウシ胸最長筋由来の筋芽細胞の培養システムにおいて，MyHCの発現が解析さ
(1)筋芽細胞と筋管では developmental-type MyHC (MyHC-dev), βslow-type MyHC (MyHC-slow) および fast-type MyHC (MHC-fast) が発現する。 (2)筋形成過程において、MyHC-slow, MyHC-fast2A の mRNA は発現するが、MyHC-fast2X mRNA は発現しない。 (3)IGF-1 により、筋芽細胞と筋管では MyHC-slow 発現が促進し、筋芽細胞が筋管より発現増強することが明らかにされた。本年度は昨年の研究成果をもとに、ウシとヒツジの骨格筋の筋再生過程で、筋芽細胞、筋管、筋線維での MyHC アイソフォームの発現様式を解析し、筋線維型の決定機構を解明することを目的とした。

2. 方 法

材料は黒毛和種牛を使用し、全身麻酔後、背部皮膚を切開し、胸最大筋を露出させ、凍傷による筋壊死を誘発することにより、再生筋を作製した。手術 5 日後、放血と殺し、筋組織をすみやかに採取し、組織片（約 1 cm²）を液体窒素中で凍結した。また、筋形成過程で新しい筋細胞の変化を観察するために、ヒツジ咬筋を使用し、同様の方法で再生筋を作成し、手術後 5, 10, 15, 30, 60 日後に再生部から筋組織を採取した。

再生筋において、筋細胞の MyHC-fast および MyHC-slow, MyHC-dev の発現を免疫組織化学的手法により検出した。1 次抗体は抗ウシ MyHC-fast モノクローナル抗体（Medac：×20 および Sigma 社：×400）、抗ウシ MyHC-slow モノクローナル抗体（Medac 社：×50）と抗ウシ MyHC-dev モノクローナル抗体（Medac 社：×20）を、2 次抗体は FITC 標識抗マウス IgG 抗体（×400）を用いた。

凍結切片（8 μm）はクリオスタットを用いて作製し、−20℃のメタノールで固定後、3％ ヤギ血清で20分処理し、1 次抗体を 4℃で 14 時間反応した。次に、PBS で洗浄後、2 次抗体を室温で 1 時間反応し、共焦点レーザー顕微鏡（BIO RAD 社）を用いて観察した。

3. 結 果

ウシ胸長筋では、大部分の筋線維が抗 MyHC-fast 抗体に陽性（II型筋線維）であり、抗 MyHC-slow 抗体（I 型筋線維）に陽性の筋線維はその間散在した。一方、抗 MyHC-dev 抗体に陽性の筋線維は観察されなかった。また、抗 MyHC-slow と MyHC-fast の抗体でともに染色される筋線維（中間型筋線維）が少数観察された。筋再生過程において、単核の筋芽細胞や筋管細胞、新たに形成された幼弱な筋線維は、抗 MyHC-slow 抗体や抗 MyHC-dev 抗体が陽性であった。これらの細胞は再生過程にある部位と正常な部位との境界部に多く出現し、一様に強く染色された。一方、抗 MyHC-fast 抗体が陽性の筋芽細胞は少なく、MyHC-slow や MyHC-dev 陽性細胞ほど出現しなかった。

ヒツジ咬筋の筋再生部位において、手術 5 日後に筋芽細胞と核が中央部に存在する幼弱な筋管が、手術10日後には発達した筋管が観察された。手術後の日数の経過に応じて、筋管筋線維に発達し、さらに成熟し、手術後 60 日目に完全に成熟した筋線維が観察された。ヒツジ咬筋の MyHC アイソフォームの発現に関して、正常な咬筋はすべて抗 MyHC-slow 抗体に陽性の筋線維で構成された。咬筋の筋再生過程の筋管と筋線維において、MyHC-slow 細胞は手術 5 日後ではほとんど観察されず、手術10日後に出現した。手術15日目において、強陽性の MyHC-slow 細胞が認められ、手術30～60日後ではほとんど強陽性であった（Fig. 1）。MyHC-fast に陽性の細胞は、手術5, 10日後に観察され、反応性は15～30日後に徐々に低下し、60日後では検出されなかった。MyHC-
devの細胞は手術後5, 10, 15日目に観察され、手術後30日目では認められなかった。連続切片を使用したMyHCアイソフォームの免疫染色により、再生筋の筋線維型の推移を検討した。手術5日後では、約80％が中間型、約20％がII型筋線維であったが、II型筋線維は30日目までに消失した。手術後30日目では中間型筋線維がほぼ100％であったが、手術60日後には消失した。I型筋線維は手術後30日までは認められなかったが、60日目では正常収縮と同様にすべてI型であった(Fig. 2)。これらの結果はミオシンATPaseの染色法によっても確認された。

4. 考察

筋再生過程での筋形成は、胎児期の筋形成の第2次筋形に相当すると言われる。第一次筋形成で形成される筋線維ではembryonic-typeMyHCとMyHC-slowもしくは、embryonic-typeMyHCとneonatal-typeMyHCともに発現する。これらMyHC-devはやがて親型
MyHCに置き換わり、主にMyHC-slowを発現する。一方、第二次筋形成では、発現しているembryonic-type MyHCとneonatal-type MyHCが、親型のMyHC-fastに入れる傾向にある。MyHC-slowが発現する筋線維が認められる。第二次筋形成の筋細胞ではMyHC-devの発現は次第に減少し、発現するMyHC-fastには、異なる亜型の組み合わせが生じる。

ウサ最長筋とヒツジ咬筋の再生部において、MyHC-fastを発現する筋芽細胞とMyHC-slowを発現する筋芽細胞が観察された。筋芽細胞において、これらのMyHCアイソフォームがともに発現されているかについては不明であるが、再生部の筋形成が第二次筋形成であることから、その可能性は十分に考えられる。中間型筋線維が筋形成過程で高まりに存在することから、同一の筋芽細胞でMyHC-slowとMyHC-fastの発現様式を二重染色法で明らかにする必要がある。

ラットの筋再生過程では幼弱型のembryonic-type MyHC（MyHC-dev）が発現し、その後MyHC-fast MyHC-slowが発現して、最終的にMyHC-slow筋線維で占められた。中間型筋線維において、当初はMyHC-fastがMyHC-slowより優勢であるが、日数が経過するにつれて、MyHC-fastの発現が減少し、MyHC-slowの発現が増強した。また、手術後15日目にすべての中間型筋線維で陽性であったMyHC-devは、手術30日後には陰性であった。このことから、再生咬筋の形成過程におけるMyHCアイソフォームの発現は、dev-fast→dev-fast-slow→fast-slow→slowと移行することが明らかにされた。この筋再生咬筋での筋線維型の移行は、運動特性すなわち長時間の運動に適応する神経支配が深く関与すると考えられる。

5. 要約

ウサとヒツジの再生筋の筋細胞の分化過程で、MyHCアイソフォームの発現と筋線維型の変化が明らかにされた。

(1) ウサとヒツジの筋衛星細胞由来の筋芽細胞と筋管では、MyHC-slow、MyHC-fast、MyHC-dveが発現した。

(2) ヒツジ咬筋のI型筋線維の分化過程でのMyHCアイソフォームの発現は、dev-fast→dev-fast-slow→fast-slow→slowと変化した。
（3）MyHC-dev, MyHC-fast と MyHC-slow を発現する中間型筋線維は、分化して MyHC-fast と MyHC-slow を発現する。その後の筋線維型は MyHC-fast と MyHC-slow の発現の方向付けにより決定される。

以上のように、ウシとヒツジ筋衛星細胞由来の筋芽細胞で MyHC アイソフォーム発現の多様性が示された。ウサギでは、筋衛星細胞には少なからず 2 つの分化系統が存在する9,10。これらのことにより、本研究で得られた筋芽細胞の多様性は分化系統の異なる複数種の筋衛星細胞に起因する可能性は否定できない。筋形成機序を解析するために、筋芽細胞における MyHC アイソフォーム発現の多様性とその多様性の制御が筋衛星細胞の遺伝的特性によるのか、外的要因によるのかを明らかにすることが今後の課題である。

文 献
体脂肪蓄積調節機能を有する牛肉
由来成分の検索の為の基礎的研究

Basic Study on Search of Regulatory Meat Components of Body Fat Accumulation

長谷川 信・澤野 友信・上曾山 博
（神戸大学農学部）

Shin Hasegawa, Tomonobu Sawano and Hiroshi Kamisoyama
(Faculty of Agriculture, Kobe University)

As a link in the chain of the search of regulatory meat components of body fat accumulation, the present study was conducted to elucidate the effects of meat components on triglyceride metabolism in chicks. Chicks were fed casein diet containing beef extract, and the effects of beef extract on growth performance, the lipid contents of the plasma and liver, and plasma glucose concentration were examined. Feeding the diet containing beef extract had no pronounced effect on feed intake and plasma glucose concentration. Body weight, liver weight and the levels of hepatic and plasma triglyceride were significantly increased by feeding beef extract. Abdominal adipose tissue weight tended to be increased by feeding beef extract. On the basis of the results obtained, the physiological functions of beef extract in chicks were discussed.

1. 目的

動物性タンパク質の生理的機能については深く研究されておらず、現時点では哺乳動物に関して、エネルギー代謝関連パラメーターの変動の解析に基づく抗疲労効果や牛肉由来 L-カルニチンのダイエット効果について基礎的研究がなされてい
る2-4)。この中で、マウスにおいて、種々の動物性タンパク質の抗疲労効果を明らかにするべく、エネルギー代謝関連パラメーターに及ぼす動物性タンパク質の影響が検討され、牛肉、特に赤肉部分が抗疲労効果を有する可能性が報告された。そして、牛肉摂取は、カゼイン摂取に比べ、肝臓ならびに血清トリグリセリド濃度の増加を、また肝
臓グリコーゲン量の減少をそれぞれ引き起こす傾向を有すること等を明らかにしている2)。一方、家禽に関しては、牛肉等の畜産物を含む動物性タンパク質に含まれる体内代謝調節成分についての報告は、著者等によるもの以外は見当たらない。すなわち、牛肉に含まれる成分の生理的機能を明らかにする目的で、大豆タンパク質を主要タンパク質源とする牛肉分画画分（牛肉エキスと牛肉エキス抽出残渣）添加飼料を成長牛に連続給与し、エネルギー代謝関連パラメーターとされている炭化水素、脂質およびタンパク質代謝の関連因子の変動の解析に基づき、体内代謝系に及ぼす牛肉摂取の影響を調べ、牛肉エキス摂取による腹腔内脂肪組織重量の増加を、また牛肉エキス抽出残
渇摂取による肝臓トリグリセリド含量ならびに血漿トリグリセリド濃度の増加をそれぞれ明らかにし、牛肉中に脂質、特にトリグリセリドの代謝に影響を及ぼす成分が含まれていることを推察した。

そこで、本研究では、体脂肪蓄積調節機能を有する牛鉱由来成分の検索の為の一環として、牛肉の分画成分である牛肉エキスが体内トリグリセリド代謝、特に脂肪組織トリグリセリド代謝に及ぼす影響を明らかにする目的で、カゼインを主要タンパク質源とする牛肉エキス添加飼料を成長中の雛に連続給与し、脂肪組織トリグリセリド代謝に影響を及ぼすとされている、血液、肝臓及び脂肪組織の化学成分における変動を解析したので報告する。

2. 方法

供試鶏として単冠白色レグノン種雄初生雛を用い、飼料および水は自由摂取とした。8月齢まで市販飼料（日本配合飼料）で飼育後、カゼインを主成分タンパク質源とする牛肉エキス添加飼料（Table 1）で31月齢まで飼育して、断頭採血を施し、試験飼料を有する銅赤に肉質を検出し重量を測定した。血液から血漿を分離し、血漿トリグリセリド濃度、血漿遊離脂肪酸濃度および血糖値を測定した。血漿トリグリセリド濃度の測定は、Sardesaiらの方法8およびFletcherの方法9に従って行なった。血漿遊離脂肪酸濃度および血糖値の測定は、それぞれ市販キット（和光純薬、NEFA-テストワコおよびグルコースC II-テストワコ）を用いて行った。また、Folchらの方法10を用いて肝臓から総脂質を抽出し、上述の血漿トリグリセリド濃度の測定法に従って、総脂質中のトリグリセリド量を測定した。

本研究では、ミンチした牛肉の煮沸水抽出物を乾燥粉末化し、牛肉エキスとして用いた。

Table 1 Composition of experimental diets

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>Experimental diet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+ None</td>
</tr>
<tr>
<td></td>
<td>+ Beef extract</td>
</tr>
<tr>
<td>Casein(1)</td>
<td>19.14</td>
</tr>
<tr>
<td>Beef extract(2)</td>
<td>0.31</td>
</tr>
<tr>
<td>L-arginine</td>
<td>0.97</td>
</tr>
<tr>
<td>Glucose</td>
<td>53.93</td>
</tr>
<tr>
<td>Soybean oil</td>
<td>2.00</td>
</tr>
<tr>
<td>Cellulose powder</td>
<td>15.53</td>
</tr>
<tr>
<td>Vitamin mixture</td>
<td>1.50</td>
</tr>
<tr>
<td>Mineral mixture</td>
<td>6.05</td>
</tr>
<tr>
<td>Choline-HCl</td>
<td>0.20</td>
</tr>
<tr>
<td>Butylated hydroxytoluene</td>
<td>0.01</td>
</tr>
<tr>
<td>ME (kcal/100g diet)</td>
<td>285</td>
</tr>
<tr>
<td>Crude protein (%)</td>
<td>18</td>
</tr>
<tr>
<td>Crude fat (%)</td>
<td>2</td>
</tr>
</tbody>
</table>

1) Containing 90.9% milk casein (containing 85.5% crude protein), 5.4% L-arginine-HCl, 1.7% DL-methionine and 2.2% glycine of crude protein.
2) Containing 81.3% crude protein.

3. 結果と考察

本研究では、カゼインを主要タンパク質源とし、粗タンパク質含有量が21%および粗脂肪含有量が2%となるよう、牛肉エキスを添加して試験飼料を調製した。このように調製された飼料を成長中の雛に与食し、牛肉エキスの摂取が、飼料摂取量、体重、腹腔内脂肪組織重量、肝臓重量、肝臓トリグリセリド含量、血漿トリグリセリド濃度、血漿遊離脂肪酸濃度および血糖値に及ぼす影響を調べた。その結果、飼料摂取量および血糖値においては、牛肉エキスの摂取による影響は認められなかった（Fig. 1 and 3）。しかし、体重、肝臓重量、肝臓トリグリセリド含量および血漿トリグリセリド濃度において、牛肉エキスの摂取により有意な増加が認められた（Fig. 1, 2 and 4）。さらに、牛肉エキスの摂取により、腹腔内脂肪組織重量において増加の傾向が認められた（Fig. 3）。上述の結果は、牛肉タンパク質摂取が肝臓ならびに血清トリグリセリド含量および血漿トリグリセリド濃度において、牛肉エキスの摂取により有意な増加が認められた。
Fig. 1 Effect of beef extract on feed intake and body weight in chicks.
Each bar represents the means±standard error. ** : Significant at P<0.01 with respect to control diet.

Fig. 2 Effect of beef extract on the weights of liver and abdominal adipose tissue in chicks.
Each bar represents the means±standard error. ** : Significant at P<0.01 with respect to control diet.

Fig. 3 Effect of beef extract on the levels of plasma free fatty acid and glucose in chicks.
Each bar represents the means±standard error. * : Significant at P<0.05 with respect to control diet.
Fig. 4 Effect of beef extract on the triglyceride concentrations of plasma and liver in chicks. Each bar represents the means±standard error. *and **: Significant at P<0.05 and P<0.01 respectively with respect to control diet.

セリド濃度の増加を引き起こす可能性があることを示唆したマウスについての報告2) や、著者らによる牛肉中に脂質特に関リグリセリドの代謝に影響を及ぼす成分が含まれていることを推察した報告1)と一致する。そこで、著者らは、飼料中のタンパク質源の違いが体脂肪蓄積に及ぼす影響について検討を行い、大豆タンパク質が肝臓トリグリセリド含量、血漿トリグリセリド濃度および腹腔内脂肪組織重量を減少させることを推察している。これらのことから、大豆タンパク質と異なり、牛肉中には肝臓ならびに血漿のトリグリセリド濃度および腹腔内脂肪組織重量を増加させる成分が存在する可能性が示唆され、今後このような増加機構の解明とともに、それら成分の同定が期待される。また、血漿遊離脂肪酸濃度において、牛肉エキスの摂取により有意な減少が認められたが、(Fig. 3)、血漿遊離脂肪酸濃度はリポリシスの指標の一つと言われていることから9)10)，牛肉エキスの摂取により腹腔内脂肪組織重量の増加の傾向が認められたが、体脂肪分解の抑制が示すか、この抑制機構の詳細については今後の研究が待たれる。

なお、本研究で用いられた飼料の代謝エネルギー一ならびに粗タンパク質含量が、牛肉エキス添加により対象区に比べて添加区において増加しており、この点による実験結果への影響を充分考慮すべきである。加えて、本研究は8月の酷暑中に施行されたことから、環境温度による研究結果全体への影響も考えられ、今後の研究においても充分検討する必要があると判断される。

4. 要約

体脂肪蓄積調節機能を有する牛肉由来成分の検索のための一環として、牛肉の分画成分である牛肉エキスが体内トリグリセリド代謝、特に脂肪組織トリグリセリド代謝に及ぼす影響を明らかにする目的で、カゼインを主要タンパク質源とする牛肉エキス添加飼料を成長中における鋼に連続供与し、飼料摂取量、体重、腹腔内脂肪組織重量、肝臓重量、肝臓トリグリセリド含量、血漿トリグリセリド濃度、血漿遊離脂肪酸濃度および血糖値に及ぼす影響を調べた。その結果、飼料摂取量および血糖値においては、牛肉エキスの摂取による影響は認められなかった。しかし、体重、肝臓重量、肝臓トリグリセリド含量および血漿トリグリセリド濃度において、牛肉エキスの摂取により、有意な増加

© The Ito Foundation
が認められた。さらに，牛肉エキスの摂取により，
腹腔内脂肪組織重量において増加の傾向が認めら
れた。これらの結果に基づき，鶏における牛肉の
生理的機能について考察した。

文 献
4) 若松純一，長尾哲二，沼田正寛，中村豊郎，藤巻
6) M.J. Fletcher, Clinica Chimica Acta, 22, 393-
397, 1968.
1. 目的

脂質の過剰摂取、とりわけ、飽和脂肪酸と単偶数不飽和脂肪酸含量の多い動物性脂肪の日常的な過剰摂取は高脂血症や高コレステロール血症を引き起こし、やがて、慢性心臓疾患やガン発症の危険を増大させることから、動物性脂肪の過剰摂取はヒトの健康に有害であると認識されてきた2)。他方、不飽和脂肪酸に富む植物性脂肪についてはリノール酸の上記結核症の改善効果はそれとして、その過剰摂取はその代謝産物による生体への障害が明らかにされるに及び、n-3 と n-6 の摂取比率が 1:4 程度が好ましいとする考え方から傾いている3)。

我々は先に、動物性および植物性脂肪摂取後の生体内への分散の様子をラットを対象として調査し、従来の日本人脂肪摂取水準とされる12% wt/diet wt の摂取の場合、確かに血中脂肪濃度を有意に増加させるものの、肝臓や腹腔内への蓄積はむしろ植物油摂取の場合よりも少ないことを明らかにした4)。しかし、脂肪燃焼を加速する β3 作業酵素の一つである BRL35135 を経口的に摂取させると生体内に蓄積する脂肪のうち、不飽和脂肪酸含量の多い植物油摂取のラットにおいてのみ有意
に脂肪蓄積を低下させることを見出した。すなわち、β3作薬剤はそれが示す脂肪の燃焼促進作用という特異な機能に選択性があることが明らかとなった。このように、牛脂に代表される動物性脂肪は植物油よりも生体内に蓄積されにくいが、一旦蓄積するとアドレナリン作薬性的生理活性物質でも排除されにくいことが示唆された⑥。ところが、牛脂は植物油よりも明らかに美味しい。ヒトは美味しい食物を腹八分目で止めるのは難しく、常人は腹一杯食することを欲する。その結果、熱量あるいは脂肪を過剰に摂取すれば生体内での脂肪のde novo合成は進まず、摂取した脂肪はほとんどそのままの形で生体内に蓄積される。従って、安心して動物性脂肪を腹一杯食べることを可能にするためには、生体内への飽和脂肪酸の蓄積を低下させる得るメカニズム乃至は生理活性物質を見出すことが必要である。

カルニチン（4-トリメチルアミノ-3-ヒドロキシ酢酸）は牛肉中に多量含まれる物質で、長鎖脂肪酸のミトコンドリア内への移送に関与して脂肪酸の燃焼を加速する。ミトコンドリアへの移送に関与している長鎖脂肪酸に対する特異性はないものと考えられている。従って、上述のβ3アゴニストによっても蓄積抑制効果がみられなかった飽和脂肪酸に対しても燃焼促進効果が期待される。また、運動は血清脂質代謝に好影響を及ぼすことはよく知られている⑦。

本研究の目的は、摂取した各種油脂の生体内での代謝加速の有無を、生体内への脂肪蓄積のあり方、肝臓におけるミトコンドリアへの長鎖脂肪酸の移送を触媒するカルニチン・パルミトイル・トランスフェラーゼ活性の脂肪酸依存性の有無、などについて調査し、栄養過剰摂取下における動物性脂肪の蓄積抑制の方法を探ることにある。

2. 材料および方法

2.1 ラット

Sprague-Dawley(SD)ラット（雄、7週齢）をセアック館から購入した。ラットは個別にステンレススチール製のワイヤで作られたケージの中に入れて、バイオトロン中で20℃、60%湿度、12時間明夜下に1週間手作業料（Charles River CRF-1）で予備飼育を行ったのも、下記の2.2に述べる4グループに分け1週間飼育した。と殺は一夜絶食後エーテル麻酔下で脱血と殺した。血液、肝臓、腹腔内脂肪、筋肉を採取し、血液から遠心分離により血清を採取した。その他の臓器などを採取後重量を計測ののち、分析時まで-80℃のフリーザー中に保存した。

2.2 実験計画

本実験用に調製した飼料（Table 1）には、牛肉エキスを含まない飼料と0.3%カルニチンを含むように設定した牛肉エキスを含む飼料区を設けた。この二つの飼料で飼育する間にそれぞれ2日に1回、1日当たり30分間自発運動をするグループとしないグループをと設けた。これら4つのグループ分けは各グループの総体重がなるべく等しくなるように行った。各グループのラットとも個別ケージの中で飼育した。

<table>
<thead>
<tr>
<th>Table 1 Composition of experimental diet (g/100g diet)</th>
<th>0%</th>
<th>0.3%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Beef extract concentrate</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Olive oil</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>Sucrose</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>α-Corn starch</td>
<td>50.9</td>
<td>44.9</td>
</tr>
<tr>
<td>Cellulose powder</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Mineral mixture</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Vitamin mixture</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Choline vitrinate</td>
<td>0.2</td>
<td>0.2</td>
</tr>
<tr>
<td>Cholesterol</td>
<td>0.1</td>
<td>0.1</td>
</tr>
<tr>
<td>Total energy (kcal)</td>
<td>335.6</td>
<td>335.6</td>
</tr>
</tbody>
</table>
2.3 飼 料
タンパク質源中のカルニチンの寄与を少なくするためタンパク質源としてカゼインを用いた。脂肪としてはオリーブオイル（関東化学）を、ビタミンおよびミネラル混合物はオリエンタル酵母㈱から、セルロースはアドバンテック㈱、DL-メチオニン、酒石酸水素コリン、スクロースおよびコレステロールはNacalai Tesque㈱からそれぞれ購入した。コースターは食用のものを使用した。牛肉エキスは伊藤ハム㈱よりご提供いただいた。給餌量は1日当たり30gとした。この飼料30gの熱量は130kcalとなり、ラットの1日当たり最少必要量80kcalより高い。従って、この熱量供給量下ではラット体内において脂肪のde novo合成はほとんど生じない。

2.4 自発運動
足掛け用の棒が等間隔に60本づいた直径30cm、一周96cmのトレッドミル（RS-204-5、KORI SEIKI MFG Co. Ltd.）の中にラットを入れ、30分間自由に走らせた。このトレッドミルには走行方向に関係なく一周ごとにカウントするカウンターが組み込まれている。30分間の自発運動中の運動量（トレッドミルの回転数）を計測した。本研究における自発運動とはラットに対して一切の刺激は行わず、ラットの自由意志に基づく運動のみを指している。

2.5 脂質の定量
0.5mL血清、0.6g肝臓、1.0g腹腔内脂肪、1.0g筋肉および1.0g糞からFolchらの方法5)に準じてクロロホルム-メタノール混合液にて脂質を抽出後、窒素気流中で抽出溶媒を蒸散し、完全に除去したのち、その重量を求めた。

2.6 脂肪酸組成の分析
血清脂質、腹腔内脂肪、筋肉脂肪、飼料に添加したオリーブオイルおよび糞中脂肪の脂肪酸組成は塩酸-メタノール混合液中でメチル化した後、ガスクロマトグラフGC-14A（島津製作所）を用いて分析した。カラムはULBON社製のHR-SS-10（0.25mm×30m）を使用した。分析条件は、カラム温度は15℃から220℃まで1分当たり4℃の速度で上昇させ、気化室温度は250℃、検出器温度を300℃とした。キャリアガスはHeガスを用いた。検出はFID検出器で行った。

2.7 カルニチンパルミトイルトランスフェラーゼ活性測定
本酵素活性はMarkwellらの方法に準じて測定した7)。すなわち、終濃度0.0375mMパルミトイルCoA、0.25mM DTNB、1.25mM EDTAおよび0.1% TritonX-100を含む58mMトリス塩酸緩衝液（pH8.0）にミトコンドリア（タンパク質約0.5mg）を添加し、27℃、412nmで5分間吸光度を追跡し（その値をプランク値とする）、その後L-カルニチン（最終濃度1.25mM）添加時に得られた吸光度の増加からプランクの吸光度の増加を差し引くことにより、次のようなCoAの生成速度を求め、酵素活性を測定した。

活性（nmol/min/mg protein）=
{(（反応時の吸光度の増加）-（プランクの吸光度の増加）/13,600）×10²×（反応液量 m/1000）}×（1/反応時間 min）×（1/タンパク質 mg）
なお、上記計算式中の13,600はCoAのモル吸光係数である。

2.8 血中乳酸濃度
飼養期間の最終週に自発運動ラットグループについて、運動前および運動後の血中乳酸濃度を測定した。測定に際してはLactate Pro（アークレイファクトリー）を用いた。

2.9 統計処理
得られたデータはStudent's t-testにより有意差検定を行った。
3. 結果

牛肉エキスを含む飼料と含まない飼料で飼養する間にラットに自発運動をさせたグループとそうでないグループのラットの増体変化を Fig. 1 に示している。この図に示す増体の様子は牛肉エキスを含まない飼料で実施した以前の実験結果とは異なる傾向を示した。すなわち、今回の飼養試験において、牛肉エキスを含まない実験区では、自発運動したグループの増体の方がしなかったグループの増体量よりも見かけ上少しだけ大きい。この傾向は参考資料に示す結果と同様の傾向ではあったが、統計上有意差を示すほど大きなものではない。前回の同様の試験ではこの差がもっと少し大きく有意なものであった。これに対し、牛肉エキスを含む飼料で飼養したラットのグループではこの関係が逆転したものとなった。すなわち、牛肉エキスの主成分の一つであるカルニチンの飼料中に占める割合が 0.3％に相当する量に調整した飼料で飼養したラットのグループでは、自発運動しないグループの増体量の方が自発運動をしたグループのそれよりも見かけ上大きい、という結果が示された（統計上の有意な違いは認められなかった）。何故このような違いがみられたのかはこのデータだけからでは判断はつかない。

Table 2 には、各実験グループのラットの腹腔内脂肪量、白筋と赤筋の筋肉重量等を示している。腹腔内脂肪量は牛肉エキスを含む飼料で飼養した

Fig. 1 Live weight gain of rats

- ON: Normal diet, Non-exercise
- OE: Normal diet, Exercise
- 0.3N: Beef extract, Non-exercise
- 0.3E: Beef extract, Exercise

Table 2 Visceral fat weight, dietary intake and muscle weight.

<table>
<thead>
<tr>
<th>Diets</th>
<th>ON</th>
<th>OE</th>
<th>0.3N</th>
<th>0.3E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Visceral fat weight (g)</td>
<td>9.11±3.07</td>
<td>8.00±2.56</td>
<td>8.44±2.72</td>
<td>7.40±3.32</td>
</tr>
<tr>
<td>Diet intaked (g/day)</td>
<td>21.6±2.5</td>
<td>23.2±2.6</td>
<td>23.0±3.0</td>
<td>21.7±3.2</td>
</tr>
<tr>
<td>Muscle weight (mg/100g body weight)</td>
<td>35.1±5.9</td>
<td>36.4±4.5</td>
<td>37.8±2.4</td>
<td>40.3±5.9</td>
</tr>
<tr>
<td>Soleus</td>
<td>54.9±3.5</td>
<td>57.3±2.9</td>
<td>52.2±4.9</td>
<td>55.0±3.7</td>
</tr>
<tr>
<td>EDL</td>
<td>54.9±3.5</td>
<td>57.3±2.9</td>
<td>52.2±4.9</td>
<td>55.0±3.7</td>
</tr>
</tbody>
</table>
グループの方が見かけ上僅かに少なかったが、有意な違いはなかった。同じ飼料のラットにおける自発運動の有無による違いも、有意なものではなかったが、自発運動グループのラットの腹腔内脂肪の方が多い傾向を示した。このような傾向は自発運動区における脂肪燃焼が行われた可能性を示唆するもののように思われる。牛肉エキスの有無と筋肉重量の関係を見ると、赤筋のヒラメ筋（Soleus）の場合、牛肉エキスを含む飼料区のラットの方が含まれない飼料区のそれより少しだけ大きくなったが、統計上有意差はみられなかった。また、運動により何れの飼料区でも軽かだが筋肉重量の増加がみられた。白筋である長趾伸筋（EDL）では、牛肉エキスを含む飼料区のラットのほうが少し軽かったが、有意な差はなかった。この筋肉の場合でも、何れの飼料区でも自発運動により筋肉重量の見かけ上の増加がみられた。自発運動グループのラットで筋肉重量が大きくなる、という傾向は前報①に示した研究において血中IGF-1濃度が高くなるという事実からも裏付けられた。

Fig. 2 には、飼料に含まれる脂肪、腹腔内に蓄積した脂肪、筋肉に蓄積された脂肪、肝臓に蓄積した脂肪および血清中の脂肪の脂肪酸組成を示している。牛肉エキスを含まない飼料で飼育したラットにおいて、自発運動したグループとしなかったグループの脂肪酸組成を比較すると、腹腔内脂肪を構成する脂肪酸組成には運動の影響はまったくと言ってよいほどみられなかった。筋肉に蓄積する脂肪の脂肪酸組成ではエイコサペンテン酸やドコサヘキサエン酸その他の微量に含まれる脂肪酸が運動グループで少なく、その分オレイン酸の割合が大きかった。また、ステアリン酸の比率が運動グループで少し小さくなった。肝臓に蓄積した脂肪の脂肪酸組成も筋肉中に蓄積したその脂肪酸組成の構成と同じように、微量脂肪酸の比率が小さい分だけオレイン酸の比率が大きいものであった。血清中の脂肪の脂肪酸組成では運動グループで微量脂肪酸の割合が小さかったが、オレイン酸の割合が大きくなった。

0.3%牛肉エキスを含む飼料で飼育したラットにおいても、自発運動をしたグループとしなかったグループとの間で腹腔内脂肪の脂肪酸組成にはほとんど変化がみられなかったが、筋肉内蓄積貯蔵については運動したグループで少し微量脂肪酸の比率が減少し、その分オレイン酸の比率が増加した。肝臓に蓄積した脂肪では自発運動したグループで微量脂肪酸の比率が増し、その分パルミチン酸の比率が少し低下した。血清脂肪においては運動区で微量脂肪酸の比率が減少し、その分オレイン酸の比率が増加した。このように、牛肉エキス投与と自発運動の組み合わせは蓄積貯蔵によって様々な応答を示した。肝臓ミトコンドリア画分のタンパク質 mg 当たりのカルニチンパルミトイルトランスフェラーゼ活性の測定結果は、牛肉エキス投与区のラットで有意に高かった（Fig. 3）。この結果は上述の蓄積貯蔵に関するデータをどのように説明するのであろうか？筋肉中のこの酵素の挙動をも含めて十分に調査・検討すべきであろう。

本実験は、牛肉エキス投与と適度の運動の組み合わせが肝臓への飽和脂肪酸蓄積を少なくする、乃至は、減少させることができることを示唆するものであるかもしれない。脂肪肝における蓄積脂肪の除去はきわめて困難な問題であるが、この組み合わせはその治療に一つのヒントを与えるものであるかもしれない。

4. 要約

牛肉エキスを含む飼料と含まれない飼料で4週間飼育する間にそれぞれの飼料区で1日当たり30分間の自発運動をしたラットとしなかったラットの増体と特定の筋肉重量および体内に蓄積乃至分
Fig. 2 Fatty acid composition of lipids in the visceral, muscle, liver and serum of rats
布する脂肪の脂肪酸組成、肝臓におけるカルニチンパルミトイルトランスフェラーゼ活性について比較検討した。牛肉エキスを含む飼料で飼育したラットの増体重運動の効果を不明確なものとした。牛肉エキスを含む飼料による飼養は赤筋と白筋とで見かけ上その応答が異なる傾向を示した。ラット体内に蓄積した脂肪の脂肪酸組成に対しては、牛肉エキス投与と自発運動の組み合わせにより肝臓に蓄積する脂肪のパルミチン酸の蓄積量を軽減できる可能性を示唆した。

文 献
2) 奥山治美 食肉の脂肪酸組成の変動性と栄養評価 食肉の科学 37, 161-172 (1996).
8) Omoto, K., Nakagawara, Y., Hayashi, T., Ikekuchi, Y. and Ito, T. Effect of protein nutrition and voluntary exercise on the growth and concomitant increase of insulin-like growth-factor-I in growing male rats. 投稿中
Mechanisms of Spontaneous Salivary Secretion in Ruminants:
Role of K⁺ and Cl⁻ Channels

Mikio Hayashi, Toru Takahata and Toru Ishikawa
(Graduate School of Veterinary Medicine, Hokkaido University)

Our previous whole-cell patch-clamp studies have demonstrated that bovine parotid secretory cells have an inwardly K⁺-rectifying conductance, which has been hypothesized to be responsible for the spontaneous secretion by the parotid gland in ruminants. Using single channel patch-clamp techniques, we report here the electrophysiological characteristics of the single channel conductance involved in the macroscopic inwardly rectifying K⁺ conductance. The channel type most commonly observed in the basolateral membrane of unstimulated bovine parotid secretory cells was a K⁺ channel with a conductance of 27 pS. The sequence of the relative cation permeabilities was: K⁺ = Rb⁺ >> Na⁺. The K⁺ channel conductance was dependent upon the square root of the extracellular K⁺ concentration. The K⁺ channel activity was inhibited by Ba²⁺(1 mM) and Cs⁺(1 mM) applied extracellularly. The addition of Ba²⁺(0.1 and 1 mM) to the bathing solution affected the reversal potential of the maxi-K⁺ channel in cell-attached patches with a KCl-rich solution in the pipette, suggesting that the inwardly rectifying K⁺ conductance is involved in setting the cell membrane potential under the unstimulated conditions. Furthermore, using RT-PCR technique, we have shown that Kir 2.1 is expressed in bovine parotid cells.

In order to identify K⁺ channels involved in stimulated secretion by bovine parotid gland, we have characterized ACh-induced K⁺ efflux from the perfused bovine parotid gland segments. Continuous stimulation with ACh caused a transient net K⁺ efflux in dose-dependent manner. The net K⁺ efflux appeared to be dependent upon an increase in cytosolic Ca²⁺ concentration. The net K⁺ efflux was inhibited by quinine, but not by tetraethylammonium (TEA) (10 mM), clotrimazole (10 μM). These pharmacological properties of the ACh-induced K⁺ efflux were similar to those of the Ca²⁺-ionophore, A23187 (3μM)-induced one. The removal of HCO₃⁻/CO₂ from the extracellular solution blunted the K⁺ efflux induced by either ACh or A23187. These results suggest that K⁺ channel responsible for muscarinically stimulated secretion is a Ca²⁺-dependent K⁺ channel, which is distinct from the maxi-K⁺ and SK channels, and that the activity of the K⁺ channel is totally dependent upon HCO₃⁻. Using the conventional whole-cell patch clamp technique, we have shown that bovine parotid secretory cells contain a Ca²⁺-activated K⁺ conductance, which could be responsible for the K⁺ efflux during the stimulated secretion.
1. 目的

反芻動物の唾液腺は高濃度の重炭酸やリン酸イオンに富む唾液を分泌するという点で単胃動物の唾液腺とは大きく異なり（Wright et al., 1986; Young et al., 1987）、その唾液分泌量はウシで100〜190リットル/日に達する。この重炭酸やリン酸イオンに富む唾液は第一胃内に存在する微生物により産生される揮発性脂肪酸の中和に重要な役割を果たしている。正常なルーメン内環境の維持に大変重要であることは明らかである。反芻動物の唾液分泌に最も寄与している下張に注目してみると、単胃動物のそれとは異なり自律神経活動やホルモンにより誘発される刺激性分泌に加え、自発性唾液分泌があることが知られている。第一胃内での微生物による食物消化が連続的であることから、この自発性分泌は反芻動物下張腺に特異的かつ重要な生理機能であると考えられる。

我々はこれまで、唾液分泌の本態が唾液腺分泌細胞を介する血管側から管腔側への一方向性のイオン輸送に伴う既の透漉流であること、さらにこのイオン輸送機構が極性をもつ分泌細胞の血管側膜および管腔側膜に存在するイオン輸送タンパク（イオントランスポーターやイオナチャネル）活性に依存することに注目し、反芻動物下張腺からの自発性唾液分泌機構解明を最終目的にイオンチャネルの研究を続けてきている。

本研究では我々が明らかにしたウシ下張腺細胞に存在する内向き整流性K⁺コンダクタンスを単一チャネルレベルで明らかにし、その分子基盤の同定を試みた。さらにウシ下張腺からの刺激性分泌に重要なK⁺チャネルの分子同定を目指し、ウシ下張腺スライス標本を用いたK⁺フラックス測定を行い、その機能的性質を明らかにしたのでここに報告する。

2. 材料および方法

北海道江別食肉衛生検査所でと殺したウシから下張腺を取り出し、冷蔵した標準細胞外液に保存した。単離下張腺分泌細胞はコラグナーゼ（Worthington Type II）を用いることにより分離した。分離した細胞は単一細胞および管網構造をつくる細胞集団からなっていた。細胞をカバーグラスに固定し、倒立顕微鏡上の実験チャンバーに装着した。イオンチャネル電流を測定するためにホールセパッチクランプ法を用いて実験を行った（Hamill et al., 1981）。下記の標準細胞内液をパッチビペットに充填後の電極抵抗はホールセパッチ電流の測定では2-3メガオーム、単一チャネル電流測定では7-10メガオームであった。不通過電極はAg/AgCl電極を用い、細胞外液は塩水を用いて電気的に接続した。Pclamp 6およびDigidata 1200（Axon Instruments, CA）を用いてコンピューター制御のもと、Axopatch-1D（Axon Instruments, CA）によりイオンチャネル電流を測定した。実験は室温（約20℃）で行い、以下の組成の溶液を用いた（mM）：
標準細胞外液 (pH 7.4, NaOH で調整)：NaCl (145), KCl (5), MgCl₂ (1), CaCl₂ (1), HEPES (10), Glucose (10)。
標準ビペット内液 (pH 7.4, KOH で調整)：KCl or K-glutamate (100), KCl (10), MgCl₂ (1), HEPES (10), EGTA (10), Glucose (10).

ウシ耳下腺細胞細胞膜に存在する K⁺チャネルを介する K⁺フラックスを測定するためにスライス標本を作製した。実験には全量約250mgのスライス標本をマイクロビペットチューブにバイオデバクトとともに封入後、1ml/minで表面灌流し、その灌流液を30秒ごとに採取した。灌流液中の K⁺濃度は炎光光度計 (Corning 480) により測定し、耳下腺からの正味の K⁺フラックス (Jk) は以下の式により算出した。

\[Jk = F(C_{out} - C_{in}) \]

F は灌流スピード, Cᵢₙ および Cᵢₜ はそれぞれ標本灌流前および灌流後の K⁺濃度である。灌流液は95% O₂/5% CO₂の混合ガスで持続的に通気し、以下に述べたものを用いた (mM)：NaCl (110), NaHCO₃ (25), Na-acetate (10), KCl (5), CaCl₂ (1), MgCl₂ (1), Glucose (10), HEPES (10), pH 7.4 (NaOH で調整)。実験は37度で行った。

3. 結果および考察

3.1 ウシ耳下腺分泌細胞に存在する K⁺チャネルの電気生理学的性質

ビペット内液として KCl または K-glutamate を基本としたものを使用し、ビペット内から細胞

Fig. 1 A. Representative single channel records from a cell-attached patch in unstimulated bovine parotid cells. The pipette contained a KCl-rich solution. B. Current-voltage relation of the 27pS K⁺ channel in cell-attached patches (n=14). C. Current-voltage relation of the 27pS K⁺ channel in inside-out patches with a KCl-rich solution in both the pipette and the bath. Points from separate patches are shown by different symbols. D. Current-voltage relation of the 27pS K⁺ channel in inside-out patches with a KCl-rich solution in the pipette and a NaCl-rich solution in the bath. Points from separate patches are shown by different symbols.
内へのK⁺移動による内向き単一チャネル電流を測定した。このような実験条件下で観察されるcell-attached patchモードでの単一チャネル電流をFig. 1に示す。Fig. 1Aはcell-attached patchモードで最も高い頻度で観察される単一チャネル電流のトレースを示している。Fig. 1Aに見られるようにパッチ膜を段階的に過分極させると内向き単一電流の増加が観察された。この内向き単一電流のコンダクタンスは27pSであった (Fig. 1B)。この単一チャネル電流のイオン選択性を調べるために、inside-out patchを作製し、細胞外液中（この場合細胞内液に相当する）の一種陽イオンとしてK⁺を含む場合、単一チャネル電流の逆転電位は−18.8mVであり (Fig. 1C)，K⁺をNa⁺に置換すると逆転電位は大きく膜脱分極側にシフトした (Fig. 1D)。同様にRb⁺で置換すると単一チャネル電流の逆転電位はK⁺と同様な値を示した。これらの結果はこのチャネルがK⁺チャネルであり、Rb⁺の透過性はほぼK⁺と同等であることを示唆している。さらにこの27pS K⁺チャネルの電気生理学的性質を明らかにするために、ピペット内液中のK⁺濃度を5〜150mMまで変化させ、そのときに観察される内向き単一K⁺チャネル電流を測定した (Fig. 2A)。単一チャネルコンダクタンスとピペット内液中のK⁺濃度の関係はミカエリス-メンデンの式で表わされ、Km値およびVmax値はそれぞれ26.3mM, 31pSであった (Fig. 2B)。単一チャネルコンダクタンス

Fig. 2 A. Current-voltage relation of the 27pS K⁺ channel in cell-attached patches for pipette K⁺ concentrations of 150mM, 100mM, 30mM, 10mM, and 5mM. B. Plot of the conductances of the 27pS channel in cell-attached patches as a function of pipette K⁺ concentration. The solid line is a nonlinear least-square fit of the Michaelis-Menten equation. C. Log-log plot of the single channel conductance of the 27pS channel as a function of pipette K⁺ concentration. The solid line is the line of best fit. D. Semi-logarithmic plot of the apparent reversal potential of the 27pS K⁺ channel as a function of pipette K⁺ concentration. The solid line is the line of best fit.
Fig. 3 A. Representative experiment, where the effect of extracellular Ba\(^{2+}\) on the 27pS K\(^{+}\) channel in an excised outside-out patch. The pipette and the bath contained a KCl-rich solution. The top trace shows the time course of the Ba\(^{2+}\) effects. Two parts of the trace are extended to display details of the channel activity. Application of Ba\(^{2+}\), the period of which is indicated by arrows, to the bath inhibited channel activity. Holding potential was -40mV. B. Effects of extracellular Ba\(^{2+}\) and TEA on the reversal potential of the maxi-K\(^{+}\) channels in cell-attached patches. Pipette contained a KCl-rich solution.

とK\(^{+}\)濃度を両対数プロットすると、傾きが0.39の関係を示した（Fig. 2C）。またこのような実験条件により得られた単ーチャネル電流の逆転電位はこの電流がK\(^{+}\)選択的ポア－を介した電流であるという仮定によく一致した（Fig. 2D）。さらにこの単ーチャネル電流の薬理学的性質を調べるためにoutside-out patchを作製し、細胞外Ba\(^{2+}\)とCs\(^{+}\)の効果を調べた。1mM Ba\(^{2+}\)は単ーチャネルコンダクタンスを変化させることなく、チャネル活性を抑制した（Fig. 3A）。一方、Cs\(^{+}\)はFlickering blockを示した。これらの実験結果はBa2\(^{+}\)とCs\(^{+}\)が異なるメカニズムによりこのK\(^{+}\)チャネルを抑制することを示唆する。27pS K\(^{+}\)チャネルの性質はウシ耳下腺細胞に認められる内向き整流性K\(^{+}\)コンダクタンスの性質と一致することから、このK\(^{+}\)チャネル活性がホールセル内向き整流性K\(^{+}\)コンダクタンスの本態である可能性が非常に高い。

次に内向き整流性K\(^{+}\)チャネルの静止膜電位に対する役割を調べた（Fig. 3B）。cell-attached patchモードで単ーMax-K\(^{+}\)チャネル電流の逆転電位に対する細胞外Ba\(^{2+}\)投与の効果を調べた。Ba\(^{2+}\)は濃度依存性および可逆的に逆転電位を膜脱分極側にシフトさせた。しかし、Maxi-K\(^{+}\)チャネルのブロッカーであるテトラエチルアンモニウム（TEA：10mM）は逆転電位を変化させなかった。このことはウシ耳下腺非刺激時膜電位の維持に内向き整流性K\(^{+}\)チャネルが重要な役割を果たしていることを強く示唆する。

さらにこの内向き整流性K\(^{+}\)チャネルの分子基盤を明らかにするために内向き整流性K\(^{+}\)チャネル（Kir）遺伝子ファミリーの中で特にウシ耳下腺に認められるK\(^{+}\)チャネルの電気生理学的性質と類似するKir2.1が発現しているか否かをRT-PCR法を用いて検討した結果、耳下腺細胞にKir2.1の発現が確認された。現在、ウシ耳下腺から得られたKir2.1を他の哺乳類細胞への強制発現、およびその電気生理学的性質の比較を試みている。今後、他のKirサブファミリーとのへテロチャネルの構成の可能性も含めさらに実験を続ける予定である。
3.2 ウシ耳下腺スライス標本を用いたK⁺フラックス測定法

次にウシ耳下腺細胞の刺激分泌時に重要な役割を果たしているK⁺チャネルの分子同定に向けて以下の実験を行った。味蕾細胞はアセチルコリン（ACh）などの刺激に応答し、細胞内遊離Ca²⁺濃度上昇を介して分泌細胞血管側膜に存在するK⁺チャネル活性化に起因するK⁺流出を引き起こすことが知られている。そこで以前に確立したウシ耳下腺スライス標本を用いたK⁺フラックス測定法により、AChにより引き起こされることあるK⁺フラックス特性を調べた。Fig. 4AはACh（10μM）刺激によるスライス標本からのK⁺フラックスに対するACh投与の効果を示している。図に示すように、AChは濃度依存性に外向きK⁺フラックスを引き起こした（Fig. 4B）。細胞内Ca²⁺濃度上昇が重要な役割を果たしているか否かを調べるために、灌流液中のCa²⁺除去の効果を調べた。灌流液中のCa²⁺除去するとACh刺激によるK⁺フラックスは完全には抑制されなかったが、2度目のACh刺激ではまったくK⁺フラックスの応答が認められなかった（Fig. 4C）。この結果は細胞外からのCa²⁺流入および細胞内Ca²⁺ストアからの流出による細胞内

Fig. 4 A. Time course of acetylcholine (ACh 10μM)-induced net K⁺ efflux from bovine parotid segments. Net efflux of K⁺ from the parotid segments assigned a positive value. B. Dose-response relationship of the effect of ACh on K⁺ efflux. The total efflux induced by the second stimulation with various concentrations of ACh was normalized to that induced by the first stimulation with 10 μM ACh. The normalized value was plotted as a function of ACh concentration. C. Effect of removal of CaCl₂ from the perfusing solution (with addition of 0.5 mM EGTA) on ACh (10μM)-induced K⁺ efflux. D. Effect of removal of HCO₃⁻/CO₂ from the perfusing solution on ACh (10μM)-induced K⁺ efflux. HCO₃⁻ (25mM) was totally replaced with equimolar glutamate, and the solution was bubbled with 100% O₂.
Ca^2+濃度上昇を介してAChによるK⁺フラックスが引き起こされることが示唆する。このことをさらに検証するために、カルシウムイオンフォアーゲーであるA23187の効果を調べた。A23187 (3μM)はAChと同様に外向きK⁺フラックスを引き起こした。これらCa^2⁺依存性K⁺フラックスに対するK⁺チャネル阻害薬の効果を調べた。K⁺チャネル阻害薬であるquinineは濃度依存性にAChにより引き起こされるK⁺フラックスを抑制した。しかしMaxi-K⁺チャネルの阻害薬である10mM TEAおよびSKチャネルの阻害薬として知られている clotrimazole (10μM) はともに抑制効果を示さなかった。これらの実験結果はTEAおよびclotrimazole非感受性、Ca^2⁺依存性K⁺チャネルがウシ耳下腺刺激分泌時のK⁺輸送に重要な役割を担っていることを示唆する。

次に、このK⁺チャネルが重炭酸イオン輸送系とリンクしているか否かを調べるために、灌流液中のHCO₃⁻をglutamateに置換した時の効果を調べた（Fig. 4D）。AChおよびA23187により引き起こされるK⁺フラックスは灌流液中のHCO₃⁻をglutamateに置換すると完全に抑制された。このことはウシ耳下腺刺激時分泌に関与するCa^2⁺依存性K⁺チャネルが重炭酸イオン輸送系と強く機能的にリンクしていることを示唆する。

このCa^2⁺依存性TEA非感受性K⁺チャネルがウシ耳下腺細胞に存在するか否かをホールセルパンチクラップ法を用いて調べた（Fig. 5）。遊離Ca^2⁺濃度が10⁻⁷MのK-glutamateビペット内液で細胞内を灌流し電位固定下でK⁺チャネル電流が存在するか否かを検討した。細胞外灌流液には10mMTEAを含むNa-glutamateに富む溶液を用いた。このような実験条件下でK⁺の平衡電位に近い逆転電位を持つホールセルコンダクタンスが認められた。

4. 要 約

ウシ耳下腺分泌細胞にパンチクラップ法を適用
し、細胞膜に存在する内向き整流性K⁺電流を担うチャネル分子の電気生理学的性質を単一チャネルレベルで詳細に調べた。ウシ耳下腺に存在する内向き整流性ホールセルK⁺電流のイオン選択性や薬理学的性質は本研究で明らかになった 27pS K⁺チャネルの性質と一致した。また Kir2.1 が反選動物耳下腺の内向き整流性 K⁺チャネル分子の本態である可能性が示唆された。さらに我々はウシ耳下腺スライス標本を用いて刺激時分泌に関与する K⁺チャネルの機能的特性を K⁺フラックス測定法を用いて検討し、TEA および crotrimazole 非感受性、Ca²⁺依存性 K⁺チャネルの関与を強く示唆した。今後、この実験システム、単一分離細胞を用いたパッチクランプ法、さらには分子生物学的手法による実験を総合的に組み合わせることにより、反選動物耳下腺細胞の自発性および刺激性唾液分泌を担う K⁺チャネルの分子同定およびその分子機能発現機構解明がなされる可能性がある。

文 献
Placentaphagia by Mother Pigs Promotes the Growth of their Piglets

Tatsunobu Sonoda (Faculty of Agriculture, Miyazaki University)

The wild boars have their hole or nest and they get the babies in it. Just after they take care of the babies by licking and eating the after-birth, placenta. But, in the modern pig managing systems, almost all farmers abolish the fresh placenta which the mothers excreted after parturition.

The size of the present stalls or cages for the pregnant mothers are so narrow, so the mothers do not have a chance to take care of the babies and to eat the after-birth: placenta. If they are permitted to try, almost all mothers try the placentaphagia.

The present study was designed to confirm whether the mothers keep the habit to eat the placenta and the placentaphagia accelerate the control of the body temperature and the growth of piglets.

The new-born babies lost their heat just after birth and their body temperature decreased drastically from the near 40°C to 38°C or less and showed diarrhea, so they needed warming soon. But the babies from the mother who ate the placenta (3 times of 200g, before parturition) moved actively after birth and their body temperature did not decrease so much and kept their body temperature. And also they did not show any diarrhea.

1. 研究目的

繁殖豚は育種改良によってその繁殖能力が向上し、出産子数も増える傾向にある。その反面、体の弱い雛豚が生まれる確率も高くなり、これに過密飼育も加わって、子豚の環境に対する適応力、病気に対する抵抗力などの抵抗力が低下して、常在病原菌による下痢や肺炎などが多発し、衰弱する被害が増えている。

これらの新生子豚を健康に育て、育成することと繁殖養豚経営上最も主要な課題である。この課題を克服するには繁殖豚が保持している免疫抗体等の生理的活性物質を初生子豚にスムーズに十分に移行させ、早期離乳と多頭飼育に対応できるよう、子豚の強健性、抗病性を向上させなければならぬ。

これに対して、一般には、抗菌剤、抗生物質、等の多種の薬剤が使用されている。しかしながら、それらは必ずしも有効に作用するとは限らず、子豚生産を改善する方策は未だ与えられていないと考えている。従って、病気を感染させないことよりも、子豚の強健性を追求することが求められている。

多くの野生動物や自然放牧（半野生）の草食動物のヤクやチベット系緑羊などは、分娩直後に自分の後産（胎盤）を喰い、臭いを絶って天敵から
襲われることを防ぐのであるが、これは新生子の生存には有効な習性と考えられている。同時に、胎盤を採食することによって、泌乳が促進され、抗体などの生理活性物質を初乳を通じて子供に移すので、子供が様々な環境悪化や病気から生き残ることができると期待される。

古代中国の薬典《本草綱目》から近代漢方薬までの、人間の胎盤や動物の胎盤を泌乳促進、乳質改良、免疫力向上の奇薬として推奨している。しかしながら、これを現代の家畜生産に利用した報告は見当たらない。そこで、母豚における後産採食による、子豚の貧血抑制、免疫向上、等の可能性を検討するため、妊娠豚に他豚豚の後産を投与し、子豚の強健性と発育への影響を明らかにすることを試みた。なお、箱内の微生物に対する免疫抗体産生の促進を期待して、豚糞をも給与した。

2. 材料および方法

1) 試験群および場所

2000年7月から12月にかけて鹿児島県肝属郡串良町の永田養豚場において実施した。

2) 各豚豚

供試豚は、当農場で自家育成されたLW母豚10頭、およびそれらから出産したL.W. （三元交雑種）子豚の全頭を使った。

3) 試験区分および胎盤投与時期と量

冷凍保存した他豚豚の胎盤と生薬を、妊娠中60日目から7日間間隔で、各1回150gを、計7回採食させ、胎盤区とした。無投与の豚を対照区とした。

4) 測定項目

子豚の体重：1, 3, 7, 14, 21, 35日齢および70日齢に測定した。

子豚の体重：出生当時、1, 3, 5, 12時間後に測定した。

育成子数および育成率：育成子数は、総産子数、生産子数、生存率および育成率を算出した。

血液性状：子豚前大静脈から採血、Hb, Htと赤血球数を測った。

3. 結 果

3.1 子豚の育成成績

哺乳開始時および離乳時の子豚の平均体重は両区間には有意差は認められなかったが、70日齢時になると、平均体重は対照区の14.59kgと比べて、胎盤区は16.50kgであり有意に大きかった。

母豚の分娩育成成績をみると、生産子数、70日齢生存子数は、対照区の9.4頭、6.8頭に対し、胎盤区は12.0頭、10.0頭で、それぞれ有意に多かった。

3.2 子豚の体重変化

新生子豚の体重の変化をみると、出生時の体重は対照区の41.06℃に対して胎盤区は39.54℃であり、有意に低かった。その後、対照区子豚の体重差は急に下がり、1時間後39.14℃となり、その後の両区で差は無かったが、12時間後では胎盤区が高い傾向にあった。

3.3 血液性状

（1）ヘマトクリット（Ht）：初生時のHt値は、対照区42.3%、胎盤区44.9%で、いずれも高いレベルで、未乾燥時に急激に降下して両区とも26%前後となり、3週齢まで、低いレベルで推移した。

（2）ヘモグロビン（Hb）：新生子豚の血液Hbは対照区、胎盤区ともに非常に低いレベルで推移し、1週齢時には対照区が9.17g/dlに対し、胎盤区は8.41g/dlで有意に低かった。しかし、2週齢時には逆わり、胎盤区は8.31g/dlで対照区の7.22g/dlより有意に高い値を示した。両区とも離乳した後の回復は遅かった。
（3）赤血球数：新生子豚の赤血球は、対照区、
胎盤区ともに1週間から3週間まで500万台の低
いレベルで推移し、5週間で700万台に回復し
たが、両区の間には差がなかった。

（4）白血球数：新生子豚の白血球数は、3週
間では両区とも少なく、5週間で増加して1万
台に達した。なお、3週間では胎盤区が有意に
少ない値を示した。

3.4 下痢の発生

下痢は対照区と胎盤区でそれぞれ4頭と1頭で
下痢が見られ、胎盤区が少なかった。

4. 考 察

妊娠中期に母豚に胎盤と豚糞を給与し、その子
豚の5週間までの発育成績、血液性状、下痢症状
などを対照区と比べて、次のような結果が得られ
た。

（1）胎盤区の子豚の発育成績が対照区より良好
であったことから、妊娠母豚への胎盤の投与
が、母豚の泌乳を促進し、その結果、子豚の
成長が促進され、子豚が活力を保持すること
になったと考えられる。

（2）胎盤区の子豚の出生直後の体温低下が明ら
かに小さかった。胎盤区では新生子豚の消耗
（死亡）も明らかに少なかった。そこで、
対照区子豚の体温は異常に高かった。この体
温41℃は通常の豚の体温39℃台よりも異常に
高い。胎盤区子豚の体温は正常範囲内の39℃
台であった。従って、対照区の母豚は肺炎な
どを罹患していたために新生子豚の体温も高か
ったと考えられる。胎盤区でこの高温が見
られなかったのは、胎盤とともに糞を食べて
おり、これらにより抗体生産が進んだものと
推察される。

（3）胎盤区の子豚の血液のヘモグロビン、ヘマ
トクリット値はともに対照区より高いレベル
で推移したことから、胎盤の添加は貧血抑制
の効果を持つと推測され、胎盤が鉄供給源に
なったことも考えられるが、胎盤中の何かの
生理活性物質により、鉄の移行が促進された
ものと考えられる。また、抗体の移行をも促
進された可能性が考えられる。

母豚に対する胎盤などの給与は子豚の生育を促
進する可能性が示唆された。

5. 総合考察

一般に繁殖経営での子豚生産の目標は、肉豚過
程まで順調に成長させること、一頭産子数は12頭
前後であり、繁殖回転を2.4回以上にして、母豚
当たり年間25頭の生産が目標になっている。

しかしながら、新生子豚は脆弱であり、上記の
目標の達成には多大の工夫と努力が必要とされて
いる。特に、出生直後の体温低下、初乳吸収の不
十分な、それらに伴う下痢の頻発および貧血の発
生、等による消耗が多く、子豚生産頭数を減少さ
せている。

ところで、人間の肉産（胎盤）の有用成分およ
び薬理作用については、漢方薬学では多く研究さ
れ、泌乳促進、免疫抗体の増強などの良薬として
推奨されているようであり、産後も回復促進に使
用されることも報道されている。しかしながら、
動物の後産の給与効果については報告が少ない。

そこで、上記の繁殖経営における課題を踏まえ
て、本研究では、子豚育成の向上を図るために、
出生直後にみられる新生子豚の衰弱や死亡を抑制
し、さらに子豚の発育を促進するために、通常は
廃棄されている後産（胎盤）を事前に母豚へ給与
し、豚の習性の一つである後産採食を模倣するこ
とを試みた。

その結果、胎盤を給与された母豚の新生子豚で
は貧血がより軽く、増体が良好で、下痢やそれに
伴う消耗も少ない傾向にあった。
本研究は、永田龍児君をはじめ永田養豚場のご家族、さらに、宋仁徳君、置本宗康君、他の学生諸氏の支援を受けて実施された。

文献
1) 古郡浩・戸原三郎：子豚の発育に及ぼす飼料の影響 日豚研誌 8巻2号 (1971) : 57-65
2) 古郡浩：子豚の育豚とその対策 養豚便り (1976) 26, (11) 2-7
3) 江原新医学院：柴胡巣《中腸大辞典》 4885-4887
4) 李時珍：人形 本草綱目 人部52巻2963-2967
5) 李長忠：雑乳飼育の違いによる子豚の消化酵素の発育規律に関する研究 中国農業大学学位論文 (1998)
6) 松本高矢ら：妊娠末期及び泌乳期の母豚に対する油脂、ビタミン、アミノ酸の給与による繁殖成績の改善 群馬県畜産試験場研究報告第21号 (1985) 60-63
7) 松本高矢ら：子豚損耗防止のための飼育管理技術の開発に関する研究 (第1報) — 損耗子豚の原因別分類 — 群馬農業研究 C畜産第3号 (1986) 79-81
8) 松本高矢ら：子豚損耗防止のための飼育管理技術の開発に関する研究 (第1報) — 小子豚の育成率向上 試験 — 群馬農業研究 C畜産第3号 (1986) 82-87
9) 沼田薰：鉄剤が子豚血液状態に及ぼす影響について 日豚研誌10巻2号 (1973) 103-109
11) 柳原義照：授乳期の母豚に対する油脂添加飼料の給与が発情再帰並びに子豚の育成率に及ぼす影響 愛知農総試験報17号 (1985) 428-432
13) 上田博史：デキストラン鉄の経口投与による子豚の貧血予防について 日畜会報 56(11) 872-887
14) 上田博史・寺尾勇：デキストラン鉄とグレプトフェロンによる子豚の貧血予防 日畜会報 60(4) (1989) 359-363
15) 宋仁徳：体験した日本養豚 (中国青年農業指導者研 究報告書) (1989) 100-103
16) 三上仁志ら：豚の生体重重とその腹内変動について 日本養豚学会誌10巻3号 (1971) 116
17) 大成清：妊娠豚に対する飼料給与量 養豚界11 (1982) 52-56
18) 宇田元正：反芻における繁殖豚の飼養管理改善 (3) 油脂添加飼料の給与効果 沖縄畜試研究第36号 (1998) 69-74
19) 丸山淳一：産子数と出生時の子豚との関係について 日本養豚学会誌第27巻 第3号 (1990) 135-139
20) 押田敏雄：鉄剤の投与が子豚の血中ビタミン B12量、体重及び血液諸特性に及ぼす影響 日本養豚学会誌第33巻 第1号 (1996) 1-4
In Japanese Black Cattle, influence of feed quality on pulsatile release patterns of Growth hormone (GH) was examined in this study. In experiment I, the animals were divided into two groups; one group was freely fed with concentrate (group-C), the other was freely fed with roughage (group-R) from 5 to 10 months. At 10 months of age, intravenous challenges of thyrotropin releasing hormone (TRH) were carried out in these two groups of heifers. The blood samples were obtained with inserted jugular catheters during TRH challenge. The plasma was assayed for GH by radioimmunoassay. The response of GH release following TRH in group-R was more sensitive and stronger than that in group-C. In experiment II, the pattern of GH release during feed-shift was investigated two times in three steers; at 11 months of age in steers mainly fed with concentrate from 3 to 10 months of age, the amount of feeding concentrate was gradually decreased and that of feeding roughage gradually increased. Conversely, at 17 months of age in the steers mainly fed with roughage from 12 to 16 months of age, the amount of feeding roughage was gradually decreased and that of feeding concentrate gradually increased. During these feed-shifts, the blood samples were obtained at 15-min intervals for 8-hours. Especially, in the feed-shift from concentrate to roughage, any peak of GH was not observed in two steers and the low level of GH release was always kept. But the level of GH release in the other steer changed by these feed-shift. These results might indicate that, although feeding much concentrate-feed always controlled the level of GH release, the response of GH release to feeding much roughage could be different among steers with genetic abilities.

1. 目的

動物の成長をつかさどる成長ホルモン（Growth Hormone：GH）は脳下垂体から分泌される重要なホルモンである。その他 GH は脂肪の分解、糖利用の低下などに影響を及ぼすことが知られている。反芻類動物では GH は日中パルス状に放出されることが知られている。また、ウシの場合、飼料の摂取量によりそのパルスの大きさと数が異なることが明らかとなっている1)。

我が国の和牛生産システムにおいては3カ月齢から30カ月齢に至る長期にわたる高濃度飼料摂
取ることになる。これからの環境保全的な畜産を考慮すると、できる限り濃厚飼料給与を減らし粗飼料給与を増やすが、良質の牛肉を生産できる効率的な飼養法を模索していくことが必要である。これまで成長に親密に関わる GH の分泌パターンと給与飼料の質との関係を詳細に報告した研究はない。本研究は給与飼料の質による GH の分泌パターンとそのシフト機構を明らかとし、肉質というだけでなくより多くの肉を生産するという意味において重要な基礎的知見をもたらす研究である。給与飼料の質変化と GH の分泌パターンの動向とそのシフト機構を明らかとし、和牛の体成長との関係を明らかにして成長時期に合わせた適正な飼料を選択することができれば、本研究は無駄な飼料給与を無くした環境保全型畜産を目指すうえで重要な知見となる。まずは和牛における GH と給与飼料の質との関わりを探求する必要がある。我々はこれまで濃厚飼料給与量により GH の分泌パターンが著しく変化すること、ならびに生後 3カ月齢時から徐々に給与濃厚飼料を増加させた時、はやい時点で GH の放出が著しく抑制されることが確認した。そこで本研究では5カ月齢か10カ月齢まで濃厚飼料を多給された GH の分泌が低いレベルの牛群と逆に粗飼料を多給された GH の分泌レベルが高い牛群を用いて、下垂体より GH 放出を促すホルモンを投与することによる負荷試験を行い、それぞれの牛群における視床下部からの刺激に対する下垂体の GH 放出に関する反応性・感受性が如何なる影響を受けるかについて検討した。また、4カ月齢か10カ月齢まで濃厚飼料を飽食されたウシが11カ月齢に達した時期に今度は逆に濃厚飼料を徐々に減少させていった場合、また12カ月齢か16カ月齢まで粗飼料のみで飼养されたウシが17カ月齢に達した時期から給与される濃厚飼料を徐々に増やされた場合に、どのように GH 分泌パターンが変化するのかも検討した。

2. 方法

2.1 実験 I

材料牛には九州大学農学部附属農場高原農業実験実習場にて生産された黒毛和種雄牛を7頭用いた。5カ月齢から10カ月齢まで濃厚飼料を多給された牛群（体重比 3%）給与；C 区、4頭）と粗飼料を多給する牛群（給与濃厚飼料を体重比 1.5% に制限；R 区、3頭）に分けた。10カ月齢に達した後、下垂体に GH 放出を促すホルモンとして甲状腺ホルモン放出ホルモン (TRH) の負荷試験を行った。採血は頸静脈に装着したカテーテルから行い、TRH 投与前 30, 15, および 0 分前、投与後 2.5, 5, 10, 20, 30, 45, 60, 90 および 120 分後にそれぞれ 5cc の血液を採取した。TRH の投与量はウシの体重 1kg 当たり 1µg を目安として適当量をカテーテルより投与した。

2.2 実験 II

材料牛には九州大学農学部附属農場高原農業実験実習場にて生産された黒毛和種雄牛（三頭：221号、222号および223号）を用いた。これらは昨年度、当財団よりの助成金で遂行した研究で採血を行った同様の牛を用いた。4カ月齢時から10カ月齢時まで濃厚飼料を体重比重量 3% 給与された去勢牛は11カ月齢時から濃厚飼料を体重比 2%，1% に徐々に給与濃厚飼料を減少させられ、最終的には 0% とした。その後16カ月齢まで粗飼料（乾草）のみで飼養された。給与濃厚飼料の喫量減少には 1 〜 2 週間を要して変化させ、それぞれの変化時期に採血を行った。次にそれらのウシが17カ月齢に達した後、濃厚飼料を体重比重量 1%，2% に徐々に給与し始めた。最終的に体重比重量 3% まで増加させた。それぞれの変化には 2 週間を要し、変化時期に採血を行った。粗飼料は自由摂取とした。採血は一時的に頸靜脈にカテ
給与飼料の質の変化が和牛成長ホルモンの分泌パターンに及ぼす影響

147

テルを装着し8時間15分間隔で行われた。

実験Ⅰ、IIとも採取された血液は12時間冷蔵保存され、遠心機を用いて血中より血漿を分離し(3000rpm, 5分間)、分析まで、メデイカルフーザー内に凍結して保存した。血漿は九州大学医学部RIセンターにてラジオイムノアッセイ(二次抗体法)によりGH濃度を定量された。

3. 結果と考察

3.1 実験Ⅰ

本研究の下垂体におけるGH放出感受性に関する負荷試験のためには安価なTRHを用いた。C区とR区ともTRH投与後10分までにGHのピークが現れた(Fig. 1)。GHピークの平均値はC区で12.53±5.12ng/ml(MEAN±SE), R区で17.15±5.0ng/mlであった。TRH投与から最終の採血までの平均GH concentrationはC区で4.3±0.8ng/ml, R区で10.1±2.8ng/mlであった。C区とR区のそれぞれにGH放出感受性の悪い個体が観察され、これらの値に両区間に有意な差異は認められなかった。しかし、TRH投与後の時間ごとにC区とR区のGH concentrationを比較するとTRH投与後の20, 30および90分においてR区でC区よりも有意に高い値を示した。このようにR区ではTRH投与後10分以内にピークをむかえ、それ以後も減少が緩やかで、GH放出の持続性が認められた。それに対してC区ではGH放出感受性の強い個体でも、TRH投与後10分の間にピークが発生するものの、以後は急激に減少した。

以上のことから5か月齢から10か月齢までの給与飼料の違いが、TRHに対するGH放出感受性に影響を与えることが、すなわち濃厚飼料を飼食させると視床下部からのGH放出ホルモンの刺激に対する下垂体のGH放出感受性が抑えられる可能性が示唆された。

3.2 実験Ⅱ

本研究に供試した黒毛和種牛の3か月齢から17か月齢までの体重の変化をFig. 2に示した。3頭のうち1頭は他の2頭に比べて体重が重く、成長もよい傾向が認められた。4か月齢から10か月齢まで濃厚飼料を多給されたウシにおいてGHが低いレベルでしか分泌されず脈波はみられなかった。このことは我々が行った従来の研究結果と一致した。その後、徐々に濃厚飼料給与を減少させていったが3頭の供試牛のうち2頭ではほとんど変化が認められず、濃厚飼料給与が体重比重量0%で粗飼料のみの給与としてもGHの分泌レベルが上昇することはなかった。しかし、供試牛の1頭では濃厚飼料給与が減少し、粗飼料摂
Fig. 2 Change of live weight. No. 222 steer was always heavier than No. 221 and 223 steers from 3 to 17 months of age.

取が多くなると低いレベルではあるが GH 分泌が盛んになった (Fig. 3)。このウシは他の 2 頭に比較してやや成長がよい傾向が認められた個体であった (Fig. 2)。

11カ月齢から徐々に濃厚飼料を減少され、17カ月齢まで粗飼料のみで飼養された試験牛群の17カ月齢の時点における GH の分泌は、供試牛 3 頭のうち 2 頭は GH 分泌の変化をみせなかった。成長のよかった残りの 1 頭ではやはり給与飼料の粗飼料への変化に反応して GH 分泌が盛んになった。この個体は濃厚飼料飼育の増加に反応して GH の分泌が抑制されていた (Fig. 4)。

11カ月齢まで濃厚飼料を多給されたすべてのウシで GH 分泌レベルは著しく低くなっていた。このことは我々の従来の研究結果、すなわち 5カ月齢から10カ月齢まで濃厚飼料を多給した時、著しく GH 分泌レベルが低くなるという結果と一致した。しかし、11カ月齢以後、徐々に濃厚飼料を減少させた場合、個体によって GH 分泌パターンが変化する個体と影響を受けない個体がいた。成長のよくない 2 頭では給与飼料が濃厚飼料から粗飼料に変化しても GH 分泌は著しく低いレベルのままであった。一方、成長のよかった個体では給与飼料が粗飼料のみになると GH 分泌レベルはやや上昇し、パルスが観察されるようになった。この個体では飼料の質変化に対する GH 分泌の反応性は他の 2 頭に比較してよくなっていた。しかし、そのレベルは5カ月齢から10カ月齢まで粗飼料を多給したときの GH 分泌レベルに比べると低いものであった。3カ月齢時から徐々に濃厚飼料給与量を増やしていった場合には体重比重量 1%給与になった時点ではすべての個体で著しく GH 分泌が抑制された。このことから濃厚飼料から粗飼料への給与飼料の変化により逆に GH 分泌が促されることは予想したが、個体によってその反応性に差異が認められた。このように濃厚飼料を多給した場合にはすべての個体で GH 分泌が抑えられるが、給与飼料が濃厚飼料から粗飼料へ変化した場合の GH 分泌の反応は個体より異なった。

12カ月齢から16カ月齢まで粗飼料のみで飼育された去勢牛は17カ月齢より徐々に濃厚飼料を多給されていた。濃厚飼料を給与前は 3 頭のうち成長のよかった 1 頭の個体 (222 号) で GH の大きなパルスが観察されたが、他の 2 頭では観察されないままであった。濃厚飼料給与を体重比重量 1％、2％、3％と増加するとすべてのウシで GH のパルスは消失してしまい、その分泌レベルは著しく低くなってしまった。これらのことから、幼少期から育成期に濃厚飼料多給によって GH 分泌を抑えられたウシはその後、給与飼料を粗飼料に切り替えた場合、GH 分泌が促される個体と促されない個体に分かれてしまうことが推察された。成長の良い個体では GH 分泌は確かに盛んになっていた。このような個体間の GH 分泌反応の差異は個体の成長に関係して持ち合わせているそれぞれの個体の遺伝的な素質によるかもしれない。このことに関しては今後の検討を必要とする。
Fig. 3 Change of serum GH profile of three steers (No. 221, 222 and 223) during the feed-shift from concentrate to roughage. Blood sampling from three steers started at 11 months of age. Blood samples were collected at 15-min intervals for 8 h. The amount of feeding concentrate gradually decreased from 3% to 0% of live weight. All steers could freely feed roughage.

GH のパルス状の分泌は近年、視床下部から放出される成長ホルモン放出ホルモンと成長ホルモン放出抑制ホルモンであるソマトスタチンとの下垂体への協調作用により形成されることが分かった。血中の中 GH は実際には直接に標的組織に作用するというよりは肝臓や骨などの末梢標的組織に働き、インスリン様成長因子（IGF-I）を産生させ、その IGF-I が各組織固有の分化、増殖を起こさせるという経路をたどる。また近年では血中 GH は血糖や脂質などによる種々の代謝調節を受けることが知られており、和牛における濃厚飼料多給による GH 分泌抑制作用のメカニズムに関しても詳細な検討が必要である。

黒毛和牛の場合、濃厚飼料を幼少期より多給すると GH 分泌は著しく抑制されそのパルスはほとんど観察されないことが確かめられた。これは11か月齢以降もずっと続いた。また実験Ⅰにより視床下部からの下垂体の GH 放出刺激に対する感受性も低くなっている可能性が示唆された。これらのことは幼少期の濃厚飼料多給は下垂体から
Fig. 4 Change of serum GH profile of three steers during the feed-shift from roughage to concentrate. Blood sampling from three steers started at 17 months of age. The amount of feeding concentrate gradually increased from 0% to 3% of live weight. All steers could freely feed roughage.

of GH分泌能を著しく低下させ，それは肥育前期（青年期）になっても回復しにくくなってしまう可能性を示している。しかし，本研究では11か月齢以降に給与飼料を変化させるとGH放出能を回復できる個体も認められ，それらは個体としての遺伝的素質により差異が生じることが考えられた。今後のさらなる詳細な検討を必要とする。

4. 要約

本研究は育成期および肥育前期の給与飼料の質変化が和牛の成長ホルモンの分泌パターンに如何なる影響を及ぼすかについて研究を行った。実験Iでは5～10か月齢の間，濃厚飼料を多給された牛群と粗飼料を多給された牛群に分け，TRH投与によりGH放出感受性に関する負荷試験を行った。その結果，濃厚飼料を飽食させると視床下部からのGH放出ホルモンの刺激に対する下垂体のGH放出感受性が抑制される可能性が示唆された。実験IIでは，まず，3か月齢から10か月齢まで濃厚飼料を体重比3%給与された黒毛和種牛を11か月齢から徐々に給与濃厚飼料を減少していった場合および11か月齢から16か月齢ま
で粗飼料のみで飼養されたウシが17ヵ月齢より徐々に濃厚飼料を増加した場合のGH分泌パターンの変化を検討した。採血は飼料の変化時期に8時間15分間隔で行われる。イオウアシセイにより血清中の成長ホルモンの量を定量した。その結果、10ヵ月齢までの濃厚飼料多給によりGH分泌は著しく低くなっていた。給与濃厚飼料が減少しても供試牛3頭のうち成長のよくなかった2頭ではほとんど変化は認められなかった。成長のよかった他の1頭では濃厚飼料が0％になった時点でパルスが認められた。次に11ヵ月齢から16ヵ月齢まで粗飼料のみで飼養されたウシが17ヵ月齢より徐々に濃厚飼料を増加した場合のGH分泌パターンにおいて、11ヵ月齢の給与飼料の質変化で影響の認められなかった2頭では17ヵ月齢の飼料変化でもGH分泌に影響はみられず低いままであったが、成長のよかった他の1頭では濃厚飼料が増加するとGH分泌は著しく低くなった。幼少期から育成期に濃厚飼料を多給された黒毛和種去勢牛ではその後成長ホルモンの分泌が著しく低くなる傾向が認められたが、11ヵ月齢以降の給与飼料の質とGH分泌との関係は個体差があり、成長の良い個体で敏感に反応する可能性が示唆された。

文 献
The Effect of Whey Protein on Growth Performance in Broilers

Takako Awano (Faculty of Life and Environmental Science Shimane University)

These experiments were conducted to evaluate the effects of whey protein on the growth performance and blood glutathione of male broilers. In Experiment 1, broilers were given whey protein concentrate-1 (WPC-1, W1), whey protein concentrate-2 (WPC-2, W2) and casein (CAS) from 6 to 7 weeks of age. The growth of W2 group was higher than CAS and W1 groups. Plasma cholesterol concentration of W1 and W2 increased significantly compared to that of CAS group. In Experiment 2, broilers were given WPC-1 (W1), WPC-2 (W2) and casein (CAS) from 2 to 3 weeks of age. The growth of W1 group was higher than that of W2 and CAS group. There was no difference of blood glutathione (GSH) concentration between groups before broilers were fasted. However after 12 hours fasted, in W1 and W2 groups, blood GSH concentration significantly increased. In experiment 3, four diets of C18 (18% of Casein included), C12 (12% of casein and 6% of WPC-2 included), C9 (9% of casein and 9% of WPC-2 included) and W18 (18% of WPC-2 included) were given broilers from 1 to 3 weeks of age. Body weight gain was reduced as the increase of WPC-2 concentration. Blood GSH concentration of C9 group significantly increased compared to the other groups. Plasma cholesterol concentration of C12 and C9 increased significantly.

From these results, the effect of whey protein on the growth of broilers depends on their age and there is relationship between the concentration of blood cholesterol and GSH when fed Whey protein.

1. 目 的

乳は誕生した子に与える初めての食物であり、
単に栄養的な側面からだけではなく、様々な生理
作用を含むという観点から注目されている。実際
にこの乳清タンパク質に含まれる様々な成分の存
在が注目され、その特性が盛んに研究されている。
たとえば、細胞成長因子の存在や消化の過程で生
理活性を持つペプチドが生じることが明らかにさ
れている2). また、ラットにおいて乳清タンパク
質給与と肝臓や脾臓のグルタチオン含量の間には
関連があることが報告されている2). 最近では、
乳清タンパク質給与がブロイラーの成長に及ぼす影響

乳液年齢の雄ブロイラーに2週間程度、乳清タンパク質を含む飼料を給与したところ、カゼインを含む飼料を給与したものと比べ、増体成績は良好に推移した。しかし、その理由やメカニズムについてはまだ明らかにしていない。

そこで本研究では、製法が異なる2種類の乳清タンパク質濃縮物を給与し、乳清タンパク質がブロイラーの成長と血中グルタチオン含量に及ぼす影響を検討した。

2. 材料および方法

2.1 材料

実験に使用した乳清タンパク質は、製造法や成分の異なる2種類の乳清タンパク質濃縮物、Alacen 392 (WPC-1)、Alacen 895 (WPC-2) を日本プロテイン株式会社より購入した。

2.2 方 法

（1）実験1 雄ブロイラー（チャンキー）に6週齢まで市販飼料を給与した後、平均体重が等しくなるよう、各飼料区に12羽ずつ分け、金属製のケージで2羽ずつ1週間飼育した。各飼料区はタンパク質源としてカゼインを含むものをCAS区、WPC-1を含むものをW1区とし、WPC-2を含むものをW2区と設定した（Table 1）。水と試験飼料は自由摂取とし、飼料摂取量を毎日記録し、体重は2〜3日ごとに定期的に測定した。試験飼料給与終了時（3週齢時）に、絶食前に籠下静脈からGSH測定のために採血を行った。その後、12時間絶食させ、体重測定を行い、心臓から採血を行った。

両サンプルの血液の一滴に10％トリクロロ酢酸を加え、1000×gで遠心分離した後、上清を血中還元型グルタチオン（GSH）の分析3）で-80℃で保存し、血中GSH濃度はHPLCを用いて測定した。残りの血液は1500×gで遠心分離した後、血漿を採取し、-40℃で保存した。放血死させた後、浅胸筋、肝臓、頸蓋内脂肪を探取し、重量を測定した。

（2）実験2 雄ブロイラー（チャンキー）に2週齢まで市販飼料を給与した後、平均体重が等しくなるよう、各飼料区に12羽ずつ分け、金属製のケージで2羽ずつ1週間飼育した。各飼料区は実験1と同様である（Table 1）。水と試験飼料は自由摂取し、飼料摂取量を毎日記録し、体重は2〜3日ごとに定期的に測定した。試験飼料給与終了時（3週齢時）に、絶食前に籠下静脈からGSH測定のために採血を行った。その後、12時間絶食させ、体重測定を行い、心臓から採血を行った。

Table 1 Composition of diets Experimenta 1 and 2

<table>
<thead>
<tr>
<th></th>
<th>CAS</th>
<th>W1</th>
<th>W2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>WPC-1</td>
<td>0</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>WPC-2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>corn</td>
<td>64</td>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>soybean oil</td>
<td>4.5</td>
<td>4.5</td>
<td>4.5</td>
</tr>
<tr>
<td>vitamin mixture</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>mineral mixture</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>CaCO₃</td>
<td>1.3</td>
<td>1.3</td>
<td>1.3</td>
</tr>
<tr>
<td>CaHPO₄·2H₂O</td>
<td>1.8</td>
<td>1.8</td>
<td>1.8</td>
</tr>
<tr>
<td>KH₂PO₄</td>
<td>0.53</td>
<td>0.53</td>
<td>0.53</td>
</tr>
<tr>
<td>NaCl</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>L-Arginine</td>
<td>1.1</td>
<td>1.1</td>
<td>1.1</td>
</tr>
<tr>
<td>DL-Methionine</td>
<td>0.4</td>
<td>0.4</td>
<td>0.4</td>
</tr>
<tr>
<td>Glucose</td>
<td>0.5</td>
<td>0.5</td>
<td>0.5</td>
</tr>
<tr>
<td>Glucose</td>
<td>5</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td>Cellulose Powder</td>
<td>0.77</td>
<td>0.77</td>
<td>0.77</td>
</tr>
</tbody>
</table>

Composition of mineral mixture: MnSO₄·2H₂O, 4.5％；ZnSO₄, 4.4％；FeSO₄·H₂O, 16.1％；CuSO₄, 1.41％；Kl, 0.001％；NaSeO₃, 0.033％；CoCl₂·6H₂O, 0.034％；MoO₃, 0.002％；MgSO₄, 73.52％。Composition of vitamin mixture(3)
3. 結果および考察

乳清タンパク質をマウスに給与すると肝臓のグルタチオン含量が増加するが、効果の発現はその製法によって異なることが報告されている。そこで従来使用していたWPC-1に加え、本実験ではWPC-2を使用した。WPC-2はWPC-1よりも、タンパク質含量が高い。

実験1の増体成績をTable 2に示した。実験1では比較的週齢の進んだ6週齢のブロイラーに1週間試験飼料を自由摂取させたところ、増体量はW2区が最も高い値を示した。飼料効率はCAS区と比べ、差は認められなかった。脇胸筋、肝臓、腹腔内脂肪重量に関してはTable 4に示した。腹腔内脂肪含量は飼料区間の差が認められなかったが、脇胸筋重量をW1区が肝臓重量ではW2区が高値を示した。血漿中総コレステロール濃度を測定したところ、W1、W2区がCAS区と比べ、高値を示した。

実験2の増体成績をTable 3に示した。実験2では実験1より週齢の早いブロイラーにおける乳清タンパク質給与の影響を検討した。増体量はW1区が高くなった。飼料効率もW1区が高い値に

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Effect of Whey protein on body weight gain, feed intake, plasma total cholesterol and the weight of breast meat, liver and abdominal fat of male broilers1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td>W1</td>
</tr>
<tr>
<td>Body weight gain (g/week/bird)</td>
<td>354±22</td>
</tr>
<tr>
<td>Feed intake (g/week/bird)</td>
<td>587</td>
</tr>
<tr>
<td>Plasma total cholesterol (mg/dl)</td>
<td>167.1±7.1</td>
</tr>
<tr>
<td>Breast meat (g)</td>
<td>54.7±1.7</td>
</tr>
<tr>
<td>Liver (g)</td>
<td>29.3±2.0</td>
</tr>
<tr>
<td>Abdominal fat (g)</td>
<td>6.2±0.9</td>
</tr>
</tbody>
</table>

1) Values are means of ± SEM of 12 broilers.
2) Means with different superscripts in low are significantly different (p<0.05).

<table>
<thead>
<tr>
<th>Table 3</th>
<th>Effect of Whey protein on body weight gain, feed intake, blood glutathione (GSH) and the weight of breast meat, liver and abdominal fat of male broilers1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CAS</td>
<td>W1</td>
</tr>
<tr>
<td>Body weight gain (g/week/bird)</td>
<td>148±5</td>
</tr>
<tr>
<td>Feed intake (g/week/bird)</td>
<td>330</td>
</tr>
<tr>
<td>Blood GSH 1st (μmol/ml)</td>
<td>1.44±0.08</td>
</tr>
<tr>
<td>Blood GSH 2nd (μmol/ml)</td>
<td>1.61±0.11</td>
</tr>
<tr>
<td>Breast meat (g)</td>
<td>14.8±0.6</td>
</tr>
<tr>
<td>Liver (g)</td>
<td>15.8±0.5</td>
</tr>
<tr>
<td>Abdominal fat (g)</td>
<td>3.4±0.6</td>
</tr>
</tbody>
</table>

1) Values are means of ± SEM of 12 broilers.
2) Means with different superscripts in low are significantly different (p<0.05).
3) before fasted
4) fasted for 12 hours
Table 4 Effect of Whey protein on body weight gain, feed intake, plasma total cholesterol, blood glutathione and the weight of breast meat, liver and abdominal fat of male broilers

<table>
<thead>
<tr>
<th></th>
<th>C18</th>
<th>C12</th>
<th>C9</th>
<th>W18</th>
</tr>
</thead>
<tbody>
<tr>
<td>Body weight gain (g/2 weeks/bird)</td>
<td>535±16</td>
<td>499±34</td>
<td>494±27</td>
<td>475±38</td>
</tr>
<tr>
<td>Feed intake (g/2 weeks/bird)</td>
<td>730</td>
<td>760</td>
<td>766</td>
<td>720</td>
</tr>
<tr>
<td>Blood GSH (μmol/ml)</td>
<td>1.25±0.03</td>
<td>1.31±0.04</td>
<td>1.58±0.09</td>
<td>1.39±0.04</td>
</tr>
<tr>
<td>Plasma cholesterol (mg/dl)</td>
<td>247.6±5.8</td>
<td>269.1±3.9</td>
<td>269.8±6.0</td>
<td>246.0±7.2</td>
</tr>
<tr>
<td>Brest meat (g)</td>
<td>36.6±1.2</td>
<td>33.6±2.8</td>
<td>33.1±2.4</td>
<td>30.1±1.5</td>
</tr>
<tr>
<td>Liver (g)</td>
<td>17.3±0.4</td>
<td>18.1±1.2</td>
<td>17.7±0.9</td>
<td>18.5±1.0</td>
</tr>
<tr>
<td>Abdominal fat (g)</td>
<td>4.3±0.6</td>
<td>4.8±0.7</td>
<td>4.2±0.6</td>
<td>5.2±0.8</td>
</tr>
</tbody>
</table>

1) Values are means of ± SEM of 10 broilers.
2) Means with different superscripts in row are significantly different (p<0.05).

乳清タンパク質給与がブロイラーの成長に及ぼす影響

Table 4 Effect of Whey protein on body weight gain, feed intake, plasma total cholesterol, blood glutathione and the weight of breast meat, liver and abdominal fat of male broilers

を示した。浅胸筋、肝臓および腹腔内脂肪重量における区間の差はまったく認められなかった。絶食前の血中GSH濃度は飼料区間の差は認められなかったが、12時間絶食後はCAS区と比べ、W1、W2区で有意に高値を示した（p<0.05）(Table 3)。

実験3の増体成績をTable 4に示した。一連の実験の中で最も近い、1週齢から2週間試験飼料を給与した。増体量はC18が最も大きく、次いでC12、C9、W18の順であった。すなわち、WPC-1が飼料中に増えるにつれて、増体量は少なくなっていた。血漿コレステロール濃度に関しては、C12、C9区が他の飼料区と比べ、有意に高くなった。GSHも同様に、C12、C9で高い値を示した。

グルタチオンがラットにおいて、HMG-CoAレダクターゼを介し、コレステロール合成を制御することが報告されている3)。またブロイラーにおいては要求量以上の飼料を給与すると、血中グルタチオン濃度および血中コレステロールの減少が報告されている4)。本試験では乳清タンパク質給与のブロイラーの血漿コレステロール濃度がカゼイン給与区と比べ高値であったのは、グルタチオンによる影響かもしれない。しかし、今回は血中のグルタチオン濃度のみを測定しており、肝臓やその他の筋肉組織のグルタチオ

乳清タンパク質濃縮物、WPC-1とWPC-2およびカゼインを含む飼料を週齢の異なる雄ブロイラーに給与し、成長に及ぼす影響を検討した。その結果、以下のこのような可能性があることが推測される。

(1) 二種類の乳清タンパク質、WPC-1とWPC-2のブロイラーの成長に対する影響は、ブロイラーの飼料によって異なる
(2) WPC-1、WPC-2を給与した後に絶食させると血中GSH濃度が上昇する
(3) WPC-1、WPC-2を給与したブロイラーの血漿コレステロール濃度とGSH濃度の

1) Values are means of ± SEM of 10 broilers.
2) Means with different superscripts in row are significantly different (p<0.05).
間には何らかの関係がある

文献
1) 山内邦男，今村経明，守田哲朗，牛乳成分の特性と健康，初版，p.9-18，光生館，東京，1993．
Ensiling Characteristics and Feeding Value of Total Mixed Ration Silage Prepared with Residues of High and Low Malt Liquor (Beer and Happo-shu) Production

Naoki Nishino (Faculty of Agriculture, Okayama University)

Chemical composition and ensiling characteristics of brewer's grain (BG) left after the production of beer and happen-shu were studied. Both BGs were suitable source for ensilage, and lactic acid fermentation had occurred even at sampling (without storage in a silo). The happen-shu BG had lower dry matter and higher water soluble carbohydrates than beer BG, while total-N and ADF contents were similar between the two BGs. Unlike forage crops, soluble carbohydrates were composed of maltose and raffinose in both BGs.

When BG was ensiled alone, a rapid production of lactic acid was found and the pH value was reduced to less than 4.0. The final pH value was lower when happen-shu BG was ensiled, probably due to higher initial sugar content compared with beer BG. TMR-type silage was successfully preserved with BG, while lactic fermentation was severely restricted when happen-shu BG was incorporated. Even in the relatively high pH silage, no butyric acid was detected and the NH₃-N content (5.0% total-N) was low as found in well-fermented TMR-silage.

Protein digestibility and nitrogen balance were higher in goats fed TMR-type silage prepared with happen-shu BG. Ruminal concentration of VFA and acetate to propionate ratio were higher when goats fed happen-shu BG rather than beer BG. These results suggest that, although the feeding value of happen-shu BG was comparable to that of beer BG, the silage fermentation could be different when TMR-type silage was prepared.

1. 目的

ビール粕はタンパク質補助飼料として古くから利用されており、乾燥あるいはTMR（完全混合飼料）サイレージとしたものが流通している。平成8年の酒税法改正を機に発泡酒の製造が本格化したが、近年その消費は著しく増大しており、ビール関連飲料全体に占める割合は20%を越えるまでになっている。発泡酒は麦芽の使用比率や副原料の種類がビールとは異なっており、多くの場合麦芽は原料の25%未満で、米、とうもろこし、こうりゃん、馬鈴薯、澱粉をはじめとする様々な副原料が高い割合で使用されている（Table 1）。このことから、発泡酒粕の成分組成がビール粕とは異なることを示唆しており、栄養素の利用性やサイレージの発酵特性もビール粕と発泡酒粕では異なることが推察されるが、それらに関する実験はこれまでほとんど行われていない。

副原料の種類および使用割合の選択の幅が広いことから、発泡酒粕の成分組成はビール粕に比べ
て製造会社による変動が大きいと考えられる。また、高水分の醸造粕であることから、飼料として貯蔵・利用するにはサイレージ化が最も適すると考えられる。本実験では、国内で生産（排出）される代表的な発泡酒粕の化学組成を調べるとともに、ビール粕と発泡酒粕をTMR型サイレージとした場合の貯蔵性ならびに栄養素利用性をヤギを用いて比較検討した。

2. 方 法

国内大手3社のビール工場から排出されたビール粕と発泡酒粕を採取し、pHと有機酸含量を測定するとともに、凍結乾燥試料を用いて化学成分を分析した。3社のうち1社の粕の生の状態で採取したが、残り2社のものについては凍結状態で郵送されたものを使用した。試料の採取回数はA社が4回、B社が3回およびC社が1回で、A社からは生粕だけを、B社からは生粕と脱水粕を、C社からは脱水粕だけを入手した。脱水粕とは、取り扱いを容易にするためにペルトプレス等で脱水処理した粕のことである。なお、試料の採取は1カ月以上の間隔をおいて行い、製造ロットによる化学成分の変動の大きさを調べた。

サイレージの調製は、生状態で入手した粕を用いて行った。ビール粕あるいは発泡酒粕を直接あるいは数種飼料と混合してTMR型とした後（粕：ビートバルブ：オーツヘイ：フスマ：糖蜜＝5：2：1：1：1）、500ml容のポリ瓶に詰め込んで25℃の恒温室中で保存した。詰め込み量は単独貯蔵で580〜650g、TMR型貯蔵で480〜530gであり、貯蔵期間は5, 20および40日間とした。

消化試験用のTMR型サイレージも上記と同様の組成で調製し、ポリエチレンバッケに20kgずつ詰め込んで25℃で40日間以上保存した。なお、ビートバルブとオーツヘイはラセレーターで粉碎したものを使用し、すべての飼料が十分混合されるようにした。

消化試験はルーメンカニューレ装着の委託シバヤギ3頭を用いて行った、TMR型サイレージを維持量（乾物で体重の2％）給与して消化率および窒素出納を測定した。また、ルーメン液を経時的に採取してVFAおよびNH3-N濃度の変化を調べた。

乾物率は凍結乾燥によって求め、化学成分の分析は常法で行って行った。乳酸菌数はGYP白亜寒天培地を用いて測定した。可溶性糖類は、試料を80％EtOHで抽出した後、アミノカラムおよび示差屈折計を用いたHPLCで定量した。また、脱脂試料を熱水で抽出した後、アンスローム硫酸法で比色的な測定も行った。

消化率、窒素出納およびルーメン液性状における有意差は、t-testにより検出した。

3. 結果と考察

化学成分の分析結果をTable 2に示した。乾物率はビール粕より発泡酒粕の方が低い値を示したが、製造会社やロットによる違いは大きくなかった。脱水粕の乾物率は35％前後であり、単独貯蔵
<table>
<thead>
<tr>
<th>Item</th>
<th>Brewer's grain</th>
<th>Wet</th>
<th>Pressed</th>
<th>Item</th>
<th>Brewer's grain</th>
<th>Wet</th>
<th>Pressed</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>A Beer</td>
<td>4.78(4.61-5.09)</td>
<td></td>
<td>A Beer</td>
<td>29.3(26.5-32.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>4.26(4.02-4.59)</td>
<td></td>
<td>Happo-shu</td>
<td>30.0(28.6-31.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B Beer</td>
<td>4.70(3.77-5.30)</td>
<td>5.25(5.13-5.46)</td>
<td>B Beer</td>
<td>21.4(20.2-22.3)</td>
<td>22.3(22.1-22.6)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>4.90(4.27-5.42)</td>
<td>4.64(4.34-4.86)</td>
<td>Happo-shu</td>
<td>19.4(19.0-20.0)</td>
<td>19.5(18.4-20.1)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Beer</td>
<td>4.78</td>
<td></td>
<td>C Beer</td>
<td>22.4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>5.14</td>
<td></td>
<td>Happo-shu</td>
<td>22.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lactic acid (% DM)</td>
<td>A Beer</td>
<td>1.24(0.54-1.81)</td>
<td></td>
<td>A Beer</td>
<td>55.4(42.2-66.9)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>2.22(1.52-3.25)</td>
<td></td>
<td>Happo-shu</td>
<td>53.4(49.4-57.4)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B Beer</td>
<td>1.78(0.77-3.58)</td>
<td>0.35(0.30-0.40)</td>
<td>B Beer</td>
<td>36.1(33.0-38.0)</td>
<td>38.1(37.9-38.5)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>1.35(0.08-2.71)</td>
<td>0.86(0.55-1.25)</td>
<td>Happo-shu</td>
<td>31.3(29.7-33.3)</td>
<td>34.2(31.6-37.7)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Beer</td>
<td>0.65</td>
<td></td>
<td>C Beer</td>
<td>28.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>0.33</td>
<td></td>
<td>Happo-shu</td>
<td>51.7</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dry matter (%)</td>
<td>A Beer</td>
<td>22.7(22.1-23.3)</td>
<td></td>
<td>A Beer</td>
<td>16.9(13.0-23.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>20.2(18.0-22.1)</td>
<td></td>
<td>Happo-shu</td>
<td>23.1(20.3-29.5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B Beer</td>
<td>24.0(23.3-24.5)</td>
<td>37.5(36.6-39.3)</td>
<td>B Beer</td>
<td>8.33(6.72-9.84)</td>
<td>8.69(7.06-9.82)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>22.1(21.0-22.6)</td>
<td>36.1(35.8-36.6)</td>
<td>Happo-shu</td>
<td>7.14(6.20-7.65)</td>
<td>7.65(7.06-8.21)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Beer</td>
<td>34.8</td>
<td></td>
<td>C Beer</td>
<td>11.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>34.0</td>
<td></td>
<td>Happo-shu</td>
<td>13.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>NDF (% DM)</td>
<td>A Beer</td>
<td>70.5(66.9-72.1)</td>
<td></td>
<td>A Beer</td>
<td>1.65(1.08-1.95)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>60.0(57.0-63.2)</td>
<td></td>
<td>Happo-shu</td>
<td>5.00(2.46-8.10)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B Beer</td>
<td>65.5(64.4-66.8)</td>
<td>70.3(69.7-71.1)</td>
<td>B Beer</td>
<td>1.46(0.17-2.15)</td>
<td>0.86(0.75-1.05)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>60.1(57.4-62.6)</td>
<td>68.4(67.3-70.2)</td>
<td>Happo-shu</td>
<td>4.48(3.65-5.61)</td>
<td>1.32(1.22-1.43)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Beer</td>
<td>70.8</td>
<td></td>
<td>C Beer</td>
<td>1.21</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>71.9</td>
<td></td>
<td>Happo-shu</td>
<td>0.94</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADF (% DM)</td>
<td>A Beer</td>
<td>23.1(22.9-23.3)</td>
<td></td>
<td>A Beer</td>
<td>0.25(0.00-0.54)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>21.3(20.6-21.7)</td>
<td></td>
<td>Happo-shu</td>
<td>1.19(0.60-2.15)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B Beer</td>
<td>21.8(20.5-22.9)</td>
<td>22.9(21.6-24.2)</td>
<td>B Beer</td>
<td>0.46(0.18-0.64)</td>
<td>0.21(0.19-0.24)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>20.0(18.4-21.5)</td>
<td>22.4(22.2-22.8)</td>
<td>Happo-shu</td>
<td>1.03(0.86-1.20)</td>
<td>0.36(0.32-0.39)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Beer</td>
<td>22.9</td>
<td></td>
<td>C Beer</td>
<td>0.39</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>21.8</td>
<td></td>
<td>Happo-shu</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WSC by anthrone (% DM)</td>
<td>A Beer</td>
<td>3.31(2.18-5.04)</td>
<td></td>
<td>A Beer</td>
<td>1.94(1.14-2.48)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>10.6(8.81-15.4)</td>
<td></td>
<td>Happo-shu</td>
<td>6.30(3.07-10.6)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B Beer</td>
<td>4.67(3.43-5.40)</td>
<td>2.84(2.32-3.35)</td>
<td>B Beer</td>
<td>2.02(0.35-3.00)</td>
<td>1.12(0.94-1.28)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>10.6(8.32-13.8)</td>
<td>3.75(3.30-4.21)</td>
<td>Happo-shu</td>
<td>6.20(5.04-8.21)</td>
<td>1.77(1.58-2.10)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>C Beer</td>
<td>3.28</td>
<td></td>
<td>C Beer</td>
<td>1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Happo-shu</td>
<td>2.58</td>
<td></td>
<td>Happo-shu</td>
<td>1.27</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Values are means with ranges in parenthesis. Samples were taken four times, three times and once for company A, B and C, respectively.
で中水分サイレージが調製可能なレベルであった。タンパク質含量はA社の粕が30％前後、BおよびC社の粕が20％前後であり、製造会社による違いが大きかったが、粕の種類あるいは脱水による差はほとんどみられなかった。NDINの割合も製造会社による違いが大きく、A社のものは粕の種類に関わらず全Nの50％以上がNDINであった。ビール粕と発酵酒粕の違いは小さかったが、例外的にC社の発酵酒粕はNDINの割合がビール粕の1.8倍以上であった。A社のものはADINの割合も高く、発酵酒粕では平均23％以上のNがADINであった。

麦芽の乾燥や糖化の際に熱が加えられるため、ビール粕や発酵酒粕のタンパク質はルーメン内微生物による分解を受けにくくなっている。NDINの割合を分解速度を指標と考えると、A社の粕はBおよびC社のものに比べてタンパク質のルーメンバイパス率が高いと推定される。一方、ADINは不消化のタンパク質と考えられており、A社の粕はBおよびC社のものに比べて不消化成分の割合が高いと推察される。全窒素量にも違いがあることを考慮すると、タンパク質のルーメン内分解性は製造会社による違いが大きいと考えられるよう。

NDF含量は60～70％DMであり、発酵酒粕の方が低い傾向を示した。ADF含量はいずれも22％前後であり、製造会社およびロットによる変動は小さかった。アンスロン硫酸法で求めた可溶性糖類量は、ロットによる変動が大きいものの、ビール粕に比べ発酵酒粕が2倍以上の値を示した。脱水するとその値は著しく低くなり、ビール粕と発酵酒粕の差もほとんどみられなくなった。構成糖の主体は、粕の種類あるいは製造会社に関わらずマルトースとラフィノースであり、牧草類に含まれるグルコース、フルクトースおよびスクロースはほとんど検出されなかった。HPLCで定量した糖類の合計値とアンスロン硫酸法で求めた値を比べると、前者は後者の約60％となり、脱水したビール粕および発酵酒粕ではいずれも2％DM以下となった。多くの乳酸菌はマルトースを速やかに利用しうるが、ラフィノースの資化能はそれほど高くない。そのため、マルトースの値を発酵可能な基質量と考えると、生の発酵酒粕以外は糖含量が非常に低い値となる。アンスロン硫酸法は、フルフラール等糖以外の物質を定量する可能性があるため、本実験のような熟変性を起こした粕類の糖定量には適当でないと考えられた。

ビール粕および発酵酒粕のいずれも発酵後での発酵が進行しており、生粕では1％DM以上の乳酸が生成していた。この時点ではVFAの生成は認められず、乳酸生成が活発な粕の中にはpHが4.0以下まで低下しているものもあった。なお、表の中には示していないが、生状態で入手した粕については乳酸菌数も測定しており（n=4），いずれも10⁷cfu/g以上の高値であることを確認している。

単独あるいはTMR型サイレージの発酵特性をFig.1に示す。ポトルサイレージの調製は4回行ったが、そのうち代表的な2例について示した。単独貯蔵（conventional silage）の結果をみると、pHの低下は2例とも発酵酒粕の方が迅速であり、40日後のpHは3.8程度であった。これは乳酸生成量の違いが原因と考えられ、可溶性糖類が多い発酵酒粕の方が乳酸発酵が進めるやすいことが明らかとなった。VFAの生成量はわずかであり、NH₃-Nの比率（%total-N）は1％以下の低値であった（データは示していない）。

乾物率を45％程度としたので、TMR型サイレージでは全体的に発酵が抑制されていた。ビール粕を用いた場合は2例ともpHが4.0程度まで低下したのに対し、発酵酒粕を用いた場合はpHが4.5程度までしか低下しない事例があった。
Fig. 1 Fermentation characteristics of brewer's grain left after the production of beer and happo-shu ensiled without (conventional silage) or with various feedstuffs (TMR-type silage). Two distinct data were shown for each of conventional and TMR-type silages.

pH の不十分な低下は単独貯蔵の結果と相反するものであり、可溶性糖類量からは説明が困難である。この TMR 型サイレージでは乳酸生成が強く抑制されており、発泡酒粕を用いた TMR 型サイレージでは、可溶性糖類が多いにも関わらず乳酸発酵が抑制される場合があることが示された。ただし、pH が比較的高いにも関わらず NH₃-N の比率は5％前後であり、酪酸はまったく検出されなかった。

20kg サイズで調製した TMR 型サイレージの消化率およびヤギによる窒素出納の結果を示す(Table 3)。この場合も、発泡酒粕を用いた
Table 3 Digestibility and nitrogen balance in goats fed TMR-type silage prepared with brewer’s grain left after the production of beer and happo-shu

<table>
<thead>
<tr>
<th>Item</th>
<th>Beer</th>
<th>Happo-shu</th>
<th>ANOVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Digestibility (%)</td>
<td>72.3</td>
<td>74.5</td>
<td>NS</td>
</tr>
<tr>
<td>Dry matter</td>
<td>73.5</td>
<td>80.8</td>
<td>**</td>
</tr>
<tr>
<td>Crude protein</td>
<td>70.7</td>
<td>71.7</td>
<td>NS</td>
</tr>
<tr>
<td>NDF</td>
<td>68.6</td>
<td>66.5</td>
<td>NS</td>
</tr>
<tr>
<td>ADF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrogen balance (g/kgBW<sup>0.75</sup>/day)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intake N</td>
<td>1.02</td>
<td>1.53</td>
<td>**</td>
</tr>
<tr>
<td>Fecal N</td>
<td>0.27</td>
<td>0.33</td>
<td>*</td>
</tr>
<tr>
<td>Urinary N</td>
<td>0.46</td>
<td>0.52</td>
<td>NS</td>
</tr>
<tr>
<td>Retained N</td>
<td>0.29</td>
<td>0.68</td>
<td>**</td>
</tr>
</tbody>
</table>

Means of three goats. NS: not significant, *: P<0.05, **: P<0.01.

TMR 型サイレージは pH が 4.7 前後であり、ビール粕を用いた場合の pH 4.3 に比べ高い値であった。消化率に大きな差はなかったが、タンパク質の消化率は発泡酒粕を用いた TMR 型サイレージの方が高く、ヤギの窒素出納も有意に高い値を示した。消化試験用のサイレージ調製に用いた発泡酒粕はビール粕よりもタンパク質含量がかなり高く（26.5 vs 31.0% DM）、消化率や窒素出納の差は摂取量の違いによるものと考えられる。そのため、発泡酒粕の栄養価は基本的にはビール粕に匹敵するあるいはわずかに上まわる程度と考えるべきであろう。

ルーメン液の pH は、給与した TMR 型サイレージによる違いがほとんどみられなかった（Fig. 2）。しかし、VFA 濃度には違いが認められ、発泡酒粕を用いた TMR 型サイレージを給与する

Fig. 2 Rumen fluid characteristics in goats fed TMR-type silage prepared with brewer’s grain left after the production of beer and happo-shu. Values are means and standard deviations represented by vertical bars. Asterisk indicates significant difference due to treatment (*: P<0.05, **: P<0.01).
と、総 VFA 濃度および酢酸／プロピオン酸比が高くなることが示された。給与飼料中の成分は、タンパク質以外には量的な違いがほとんどないため、これらの原因については今後の検討課題である。しかし、この結果からも発泡酒粕の栄養価が非常に高いことが確認されよう。

4. 要約

ビール粕と発泡酒粕の貯蔵性ならびに栄養特性を明らかにすることを目的として、国内大手 3 社のビール工場で排出された両粕の化学成分を調べるとともに、それらを用いて調製した単独あるいは TMR 型サイレージの発酵特性について検討した。いずれの粕も非常に発酵しやすく、入手時点で既に乳酸が生成していた。発泡酒粕はビール粕に比べて乾物率が低く可溶性糖類量が高かったが、タンパク質および ADF 含量は同程度であった。可溶性糖類の主体はマルトースとラフィノースであり、製造ロットによる変動が大きかった。

単独で貯蔵すると、いずれの粕においても乳酸発酵が速やかに進行したが、可溶性糖類含量の多い発泡酒粕の方が pH の低下は大きかった。低水分の TMR 型サイレージとすると発酵は全体的に抑制されたが、ビール粕を用いたサイレージでは pH が安定して 4.0 程度になったのに対し、発泡酒粕を用いたものは乳酸発酵が強く抑制されて pH が十分低下しない場合があった。

タンパク質の消化率および窒素出納は、発泡酒粕を用いた TMR 型サイレージを給与した方が高かった。また、ルーメン液の VFA 濃度と酢酸／プロピオン酸比も高い傾向にあった。これらのことから、発泡酒粕はビール粕に匹敵するあるいはわずかに上まわる程度の栄養価を有することが明らかとなったが、TMR 型サイレージの貯蔵性は両者に違いがあるとも示唆された。

文 献
南西諸島における新放牧システムの
開発と牧養力の評価に関する研究

Studies on the Development of New Grazing System and Its Assessment of Carrying Capacity in South-western Islands in Japan

Yasuhiro Kawamoto (Faculty of Agriculture, University of the Ryukyus)

The objective of this study was firstly to know the potential capacity of carrying beef cattle for breeding, pasture production, pasture utilization of giant star grass under different stocking rates in intensive rotational grazing system, and to evaluate a carrying capacity on giant star grass (Cynodon nlemfuensis Vanderryst) pasture in South-western Islands of Japan.

Pasture availability before grazing started after 30 days rest had a little decrease from 3.0 to 2.5 DM t/ha with increases of the stocking rate of from 3.5 to 8.3 heads/ha in rotational grazing, while pasture utilization increased from 20 to 60%. Pasture availability and utilization was lower in continuous grazing than in rotational grazing in the same stocking rate. However, low stocking rate is advisable to maintain the pasture and animal production in winter period. High pasture availability and good quality forage to bring about effective animal productions were produced by using relatively heavy stocking rates of 6-8 heads/ha, and achieved optimum pasture utilization of giant star grass. The recovery of nitrogen applied were over 100 percent except winter.

1. 目 的

我が国の南西諸島（30° S～24° S）の南部地域では暖地型イネ科牧草を主体とする草地で繁殖用肉牛が放牧されている。放牧地で主に利用される草種は匍匐性のジャイアントスターグラス（Cynodon nlemfuensis）である。ジャイアントスターグラスは世界的にも、生産性が高く、嗜好性にすぐれる草種として知られている1）。本試験の目的はジャイアントスターグラスの牧養力の潜在性を見出すため、異なる放牧強度あるいは放牧方式における草地生産性、草地利用率、家畜生産性等をこれまでの慣行放牧の場合と比較することによって評価し、より集約的な周年放牧が行えるシステムを開発・実証することにある。

また、本放牧システムではこれまでの施肥量の数倍を投入することになるため、地域環境を考慮し、牧養力の評価に併せて施肥窒素の利用効率も検討した。

2. 方 法

2.1 試験 1

供試放牧草地は、造成後13年目のジャイアントスターグラス草地 4 ha である。4 ha を Table 1
で示すように，電気牧柵によって5牧区に分けた。牧区1から牧区4までを集約輪換方式の試験区とし，それぞれ滞牧日数の違いによって，期間内の放牧強度をha当たり3.5頭から8.3頭まで変えた。また，残りの2haを休牧期間が短く，ほとんど連続放牧方式に近い慣行区とした。試験は6月から10月までを行い，期間内に供試牛群は全牧区を繰返し4回輪換された。なお，牧区1から牧区4までの試験区は休牧期間を一律30日とした。放牧の方式や試験終了後の実際の放牧強度の値はTable 1に示した。放牧供試牛は黒毛和種の繁殖牛27頭（平均体重444kg）とそれらの生後から4カ月齢までの子牛（期間平均56kg）である。すなわち，試験期間には，出産約1カ月前から毎日母牛の放牧を開始し，出産後4カ月目までは子牛の放牧を行った。期間中，子牛は放牧地でクリープフィーディング（別餌給与）を行うため，乾草チモシーが随時給与できるような簡易な子牛用施設を設置した。

Table 1 Grazing patterns and established stocking rate in respective grazing system

<table>
<thead>
<tr>
<th>Paddock area (ha)</th>
<th>Grazing duration (days)</th>
<th>Rest duration (days)</th>
<th>Estimated stocking rate (heads/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rotational</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Paddock 1</td>
<td>0.5</td>
<td>2</td>
<td>30</td>
</tr>
<tr>
<td>Paddock 2</td>
<td>0.5</td>
<td>3</td>
<td>30</td>
</tr>
<tr>
<td>Paddock 3</td>
<td>0.5</td>
<td>4</td>
<td>30</td>
</tr>
<tr>
<td>Paddock 4</td>
<td>0.5</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Continuous</td>
<td>2.0</td>
<td>11</td>
<td>5~7</td>
</tr>
</tbody>
</table>

Table 2 Stocking rates, plant canopy height, daily dry matter intake, and estimated TDN at respective grazing system.

<table>
<thead>
<tr>
<th>Stocking rate (heads/ha)</th>
<th>Plant canopy height (cm)</th>
<th>Daily DMI (kg/head/day)</th>
<th>TDNI (kg/head/day)</th>
<th>CP (% in DM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Paddock 1</td>
<td>3.59</td>
<td>77.6±15.7</td>
<td>43.7±13.3</td>
<td>7.1±4.7</td>
</tr>
<tr>
<td>Paddock 2</td>
<td>5.14</td>
<td>79.2±13.5</td>
<td>43.8±9.9</td>
<td>5.9±2.4</td>
</tr>
<tr>
<td>Paddock 3</td>
<td>6.44</td>
<td>73.8±9.0</td>
<td>32.4±9.2</td>
<td>6.1±0.9</td>
</tr>
<tr>
<td>Paddock 4</td>
<td>8.31</td>
<td>69.9±7.8</td>
<td>29.4±3.1</td>
<td>5.4±1.0</td>
</tr>
<tr>
<td>Continuous</td>
<td>5.04</td>
<td>53.7±4.3</td>
<td>29.2±4.6</td>
<td>3.2±2.9</td>
</tr>
</tbody>
</table>

Values are shown as mean, or mean ± S.D. DMI, TDNI represents dry matter intake, TDN dry matter intake, respectively.
もに5日および約30日である。供試家畜の飼養管理と施肥管理は試験1と同様である。また、草地生産量の調査と試料分析方法も試験1と同様である。

3. 結 果

各放牧強度条件における草地現存量の草高、乾物摂取量、TDN摂取量および粗タンパク質含有量（試験1）をTable 2に示した。

輪換放牧の放牧強度3.5頭/haから8.3頭/haの各牧区における期間中の供試牛群の1頭当たりの日乾物摂取量、TDN摂取量は、それぞれ5.6〜7.1kg、2.7〜3.7kgの範囲にあった。

日本飼養標準（成雌450kg）の維持養分量でほぼ乾物摂取量とTDN摂取量はそれぞれ6.06kg、2.96kgであり、泌乳中の維持養分量を考慮すると、放牧強度8.3頭/haで最も低いものの、他の放牧強度ではほぼ充足した乾物・TDN養分量を摂取しているものと考えられる。また、粗タンパク質摂取量についても、毎日給与するフスマの粗タンパク質質量を加えると、充足していると推察される。しかし、慣行区では乾物・TDN摂取量は低い値を示した。

次に、Fig. 1に試験期間の放牧強度に伴う入牧時草量と草地利用率の推移を示した。

入牧時の草量（地上10cm以上）は、慣行区を除くいずれの放牧強度条件下でも2.7〜3.0t/haとほぼ一定の値を示した。草地利用率は放牧強度3.5頭/haから8.3頭/haまで増加するに伴い、約20％から60％に上昇した。慣行区は4水準の輪換区と比較して、入牧時草量では2.0t/ha、草地利用率では20％となり、同じ放牧強度（5頭/ha）の輪換放牧の場合と比較して、低い値であった。

秋季から次年度の春季における2水準の放牧強度での入牧時の現存量（乾物収量）ならびに草地利用率（試験2）をFig. 2に示した。また、放牧家畜が摂取したと考えられる乾物量、TDN摂取量をTable 3に示した。Fig. 2から、試験1と同様、2水準の放牧強度水準に伴う入牧時の平均現存量（乾物収量）の違いは認められなかった。草地利用率についても平均70％で推移した。

Table 3から、強放牧区における日乾物摂取量やTDN摂取量は弱放牧区より低いものの、維持養分量は充足していることが示される。しかし、気温が20℃以下になる1月から2月では、期間内の

Fig. 1 Pasture availability and utilization of giant star grass as affected by stocking rate (Exp. 1).
Pasture availability and utilization of giant star grass pasture with two levels of stocking rate (Exp. 2).

Table 3 Pasture nutritive values and estimated TDN intake at two stocking rates.

<table>
<thead>
<tr>
<th>Stocking rate</th>
<th>Daily DM Intake (kg/head/day)</th>
<th>TDN Intake (kg/head/day) (%in DM)</th>
<th>CP Intake (kg/head/day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light stocking rate</td>
<td>8.2±3.7</td>
<td>5.5±2.5</td>
<td>16.0</td>
</tr>
<tr>
<td>Heavy stocking rate</td>
<td>6.0±2.4</td>
<td>3.7±1.7</td>
<td>16.4</td>
</tr>
</tbody>
</table>

Fig. 2 Pasture availability and utilization of giant star grass pasture with two levels of stocking rate.

Fig. 3 Seasonal pasture utilization of giant star grass pasture.

単位面積内の放牧頭数は低下したため、いずれの放牧強度でも滞牧日数が2～3日減少した。

試験1における、放牧強度3.5頭〜5.1頭/ha、6.4頭〜8.3頭/haをそれぞれ弱放牧、強放牧としで平均し、試験2を合わせて、年間の入牧時の現存量（乾物収量）をFig. 3に示した。Fig. 3から分かるように、11月から3月までは他の月と比較して半分以下の値を示しており、乾物あるいはTDN摂取利用量が低いことを示している。

本試験で行った放牧形態は5日滞牧し、30日休牧する方式である。退牧後、30kg/ha（要素量）の窒素施肥を行うが、年間330kg/haを施用することになる。これまで本地域で行われている施肥量の約3倍の投与量になるため、試験1では、放牧強度3.5頭〜5.1頭/haの平均値、試験2では強
放牧区のみの施肥窒素に対する窒素利用効率を算出し、Fig. 4 に示した。その結果、1月から3月までは、100以下の値であるものの、それ以後はいずれも100以上の値となった。

4. 考察

最初に、これまでの慣行的な連続放牧と本試験で用いた新しい放牧システムである集約的な輪換放牧との比較を行った。その結果、輪換放牧は栄養価値のある程度維持しながらも、乾物生産、草地利用率を高めることが示された。

牧草の品質や最大限の選択採食の機会の必要性が家畜生産の制限要因になることが少ない寒地型草地では、連続放牧による家畜生産が輪換放牧の場合より低いことが知られている。しかし、熱帯地域における暖地型牧草の放牧草地では、一般に連続放牧が行われている9。このことは、連続固定放牧が輪換放牧と比較して、より容易で低費用の方法であることが一要因であるが、輪換放牧による家畜生産量の増大効果が低い場合が多いことも起因している9。しかし、これらの報告の多くが日増体重や乳生産量の多寡を評価するものであった。本試験は繁殖牛でもあり、十分な維持飼料が摂取されるのであれば、育成牛や乳牛のように高い栄養価の飼料を摂取する必要性がないことや考慮しなければならない。

次に、輪換放牧形態のうちで、放牧強度の強弱が入牧時の現存量や草地利用率に及ぼす影響について検討する。試験1の結果から、放牧強度が3.5から8.3頭/haまで増加した場合でも、草地利用率は20％から60％に増加するものの、入牧時の現存量（乾物収量）はほぼ一定であった。試験2でも強度の強弱に関わらず、ほぼ一定の現存量（約2トン/ha）を示し、草地利用率はいずれも70％であった。熱帯地域でもジャイアントスターグラスは85％の高い草地利用率でも草地維持が可能とする報告9もある。これらのことから、調査放牧地の基幹草種であるジャイアントスターグラスは輪換放牧によって、適正な施肥と休牧期間を維持するのであれば、より高い放牧強度条件下で極めて高い潜在能力を発揮することが示唆された。併せて放牧家畜（繁殖牛）の養分摂取量から考慮すると、6～8頭/ha/年の牧畜力が可能と考えられる。

一般に、暖地型イネ科草地では、施肥窒素の揮散や流失、あるいは土壌中への溶脱が大きいと考えられている9。しかし、本試験では、冬季を除き、いずれも100以上の高い窒素回収率を示している。このことは、放牧家畜の飼尿や牧草枯死部からの無機態窒素からの吸収量が大きいことを示している。施肥窒素の利用効率の詳細な調査は同位体窒素を用いた試験によって行う必要がある。
ものと考えられる。

以上のように、本地域のジャイアントスターグラス草地では、これまでの連続放牧である慣行区と比較して、30日休牧期間を前提とする集約的輪換放牧によって、年間平均6〜8頭/haの繁殖牛の放牧が可能と考えられた。ジャイアントスターグラスの生育適期が低下する11月から3月の期間については、冬季補完草種として寒地型牧草を追播することによって、集約的な周年放牧技術が確立され、牧業力の向上につながるものと考えられる。その際、施肥窒素成分の利用効率を詳細に検討し、地域環境に負荷のかからない草地管理法を考慮したうえで、本システムを導入することが必要となる。

5. 要 約

我が国南西諸島の放牧草地の基幹草種であるジャイアントスターグラス（Cynodon nelemensis）の牧業力の潜在性を見出すために、異なる放牧強度あるいは放牧システム条件下における草地生産性、草地利用率等を比較した。

その結果、集約的輪換放牧はこれまでの慣行的連続放牧と比較して、高い入牧時草量と草地利用率を示した。また、放牧強度3.5頭/haから8.3頭/haまで増加するに伴い、草地利用率は約20％から60％に上昇したが、各入牧時草量はいずれの放牧強度条件下でも平均2.8トン/haを示した。草地生産量が低下する約2カ月を除き、ジャイアントスターグラス草地に放牧された繁殖牛の飼分摂取量は充足されているものと考えられた。そのため、30日休牧期間を前提とする集約的輪換放牧によって、6〜8頭/haの繁殖牛の放牧が可能と考えられる。また、施肥窒素の利用効率はこれまでに報告されている知見と比較して高いことが示された。

文 献
Breed Comparison of High Meat Quality in Pigs by Eating Quality Test and Meat Quality Analysis

Keiichi Suzuki, Tomoya Shibata, Hiroshi Kadowaki, Hiroyuki Abe, Tamaki Toyoshima and Yasunori Sato
(Miyagi Prefecture Animal Industry Experiment Station)

In order to investigate the relationship between the objective measurements of meat quality traits and the subjective taste panel test, Berkshire (B), Duroc (D) breed and two crossbred (LDD, LDB) pigs were used in this experiment. The meat color (PCS, L*, a*, b*), drip loss, cooking loss, chemical composition (moisture and fat), marbling scores and physical characteristics (Tenderness, Pliability) of the loin meat and the fatty acid composition of subcutaneous fat and intramuscular fat were measured. Moreover, the taste panel test by 103 consumer monitor people was executed. In this taste panel test, meat color, tenderness, smell, juiciness, elasticity and overall deliciousness were compared with these breeds. Significant breed differences were recognized in drip loss, cooking loss, moisture, fat, and the physical characteristic. LDD and LDB were softer than B and D, and LDD and D had more intramuscular fat than LDB and B. D and B breeds were more excellent than LDD and LDB in cooking loss and B breed was more excellent than D and LDD in the drip loss. From the point of tenderness and overall delicious, the result of LDD>LDB>B was suggested in the first and second taste panel test. And the result of D>B>LDD=LDB was suggested in the third and forth taste panel tests. When the result of the taste panel test was related to the results of objective meat measurement traits, it was suggested that the cooking loss in addition to intramuscular fat be important traits.

1. 目 的

近年、海外から低価格の輸入豚肉が増加する中で、国産豚肉には高品質な豚肉の生産が求められている。そのため、肉豚を生産する基礎となる純種種の組み合わせや給与する飼料内容に特徴を持たせた飼育豚が各地で生産されている。ところどころ、豚の肉質については肉色、保水性、柔らかさ、筋肉内脂肪などの客観的に評価された肉質形質が食味テストなどの主観的な方法で測定された結果とどの程度一致するかについての試験の報告はきわめて少ない。著者等はこれまで、大麦、酒米くず、魚油等の飼料添加が肉色、保水性、筋肉内脂肪、Tenderness などの肉質形質には影響せず、脂質中の脂肪酸組成は魚油の添加により影響されることが異なる止め雄（デュロック種、パークシャー種、梅山豚）による三元交雑豚の肉質形質を比較すると Tenderness、筋肉内脂肪含量、加熱
食味テストと肉質分析による高品質豚肉質の品種間比較

171

損失率、筋束の断面積で有意な品種間差があることから、LWD 三元交雑豚の基礎となる 3 純粋種間でこうした肉質形質で明らかな品種間差があることを見なかにした。しかし、実際に試食し、食味形質についてどの程度品種間差があるか明らかでない。

本研究は、高品質で美味しい豚肉と評価されているパーカシャー種と筋肉内脂肪含量の高いデュロック種およびそれらとランドレーズ種との交雑種（LDD, LDB）を用い、客観的な方法で測定した肉質形質と主観的な食味テストによる食味性がどの程度関連しているかを明らかにすることを目的としている。

2. 方 法

ランドレーズ種（L）、デュロック種（D）およびパーカシャー種（B）の交雑による LDD と LDB、パーカシャー種およびデュロック種純粋種の去勢と雌豚を合計 37 頭供試した。体重が 30kg に達した時点で試験を開始し、105kg に達した時点で試験を終了し、24時間絶食後と殺した。なお、豚は単飼で断食給餌、自由飲水とした。給与した飼料は市販の濃厚飼料であり、体重 70kg までは肥育前期用、70kg 以降試験終了までは肥育後期用飼料を給与した。

と殺後 24 時間 4℃の冷蔵庫に冷出した左枝肉半丸について、枝肉形質を測定後、最後胸椎から 2 胸椎前の部分のロース肉を採材した。同時に、肉色標準模型を用い、肉色を測定した。また、米国 NPPC の方法により最後胸椎部分のマープリングスコアを評点した。ロース肉を採材後速やかに以下の肉質形質を測定した。まず、皮下脂肪を除いたロース肉を数枚スライスし（約 50g）、重量測定後生肉に吊り下げ本ケースに収納後 4℃の冷蔵庫に保存した。24 時間、48 時間に肉の重量を測定しドリップロスを推定した。次に、切断後 15 分以上空気中に触れれたロース肉についてミノルタ社製分光測色計 CM-2002 を使い、L*, a*, b* を測定した。さらに、残りのロース肉を筋線維的方向に沿って、2 分割し、2×1.5×5cm の肉片を 2 個採取した。重量測定後ビニール袋に入れ、70℃の温浴に 30 分入れた後室温まで放置し、水分を除いた後再度重量を測定した。減少分の水分を加熱損失率とした。この肉片をさらに、厚さ 1cm に整形し、タケトモ電機製のテンシプレッサーを用い物理的特性（Tenderness, Pliability）を測定した。なお、加熱損失率および物理的特性測定用に整形した生肉の残りを粉砕し、化学成分（水分、脂肪）の分析に用いた。水分は凍結乾燥法、脂肪はエーテル抽出法により測定した。枝肉の最後胸椎から 2 胸椎分のロース肉を採材した際、さらに 1 胸椎分を採材し、皮下脂肪内層、外層および筋肉内脂肪の脂肪酸組成を分析した。分析は日本食品分析センターに委託した。

2 交雑種および 2 純粋種の右枝肉半丸からロース肉を採材し一般消費者 103 名を対象とした食味テストを行った。テストは 4 回に分け実施した。スライスしたロース肉をしゃぶしゃぶにより試食し調査を行った。なお、タレはほん酢を使用した。調査項目は、軟らかさ、コク、香り、豚臭さ、赤肉の色、多汁性、弾力性、サシ、総合的なおいしさであり、豚臭さは 3 点法、それ以外はすべて 5 点法により評点した。D 種の生年月日が LDD、LDB および B 種より約 1 カ月遅かったため、LDD と LDB、さらに、B 種を加えた 3 種については同時期の試食が可能だったが、D 種は B 種との比較だけが可能だった。そこで、4 種の比較を行うため LDD、LDB については冷凍保存した肉を 4℃の冷蔵庫で 24 時間解凍後使用し、試食した。調査月日は平成 12 年 12 月 4 日と 11 日、平成 13 年 1 月 16 日と 19 日の 4 日である。試食モニターは仙台南市内の 20 代から 50 代の主婦を対象とし、会場はい
3. 結果と考察

Table 1 には 2 交雑種（LDB と LDD）および 2 純粋種（B と D）の発育、産肉成績を示した。LDD および LDB はほぼ同程度の発育を示した。

Table 1 Least squares means for meat production tratis of breeds and sex.

<table>
<thead>
<tr>
<th>Breed</th>
<th>Sex</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>D</td>
<td>LDB</td>
</tr>
<tr>
<td>Body weight at 30kg</td>
<td>31.7</td>
<td>31.1</td>
</tr>
<tr>
<td>70kg</td>
<td>72.6</td>
<td>74.8</td>
</tr>
<tr>
<td>105kg</td>
<td>106.6<sup>b</sup></td>
<td>104.1<sup>c</sup></td>
</tr>
<tr>
<td>Age at 30kg</td>
<td>81.3<sup>a</sup></td>
<td>69.5<sup>b</sup></td>
</tr>
<tr>
<td>70kg</td>
<td>127.4<sup>a</sup></td>
<td>114.6</td>
</tr>
<tr>
<td>105kg</td>
<td>172.7<sup>a</sup></td>
<td>155.6<sup>b</sup></td>
</tr>
<tr>
<td>Daily gain</td>
<td>30–70kg</td>
<td>890.5<sup>c</sup></td>
</tr>
<tr>
<td>70–105kg</td>
<td>778.7<sup>b</sup></td>
<td>733.4<sup>c</sup></td>
</tr>
<tr>
<td>30–105kg</td>
<td>829.1<sup>a</sup></td>
<td>854.1<sup>b</sup></td>
</tr>
<tr>
<td>Daily feed intake</td>
<td>30–70kg</td>
<td>2.97<sup>a</sup></td>
</tr>
<tr>
<td>70–105kg</td>
<td>3.67<sup>b</sup></td>
<td>3.61<sup>b</sup></td>
</tr>
<tr>
<td>30–105kg</td>
<td>3.30</td>
<td>3.28</td>
</tr>
<tr>
<td>Feed conversion ratio</td>
<td>3.339<sup>a</sup></td>
<td>3.136<sup>a</sup></td>
</tr>
<tr>
<td>30–70kg</td>
<td>4.872<sup>a</sup></td>
<td>4.956<sup>a</sup></td>
</tr>
<tr>
<td>30–105kg</td>
<td>4.011<sup>a</sup></td>
<td>3.861<sup>b</sup></td>
</tr>
<tr>
<td>Dressing percent (%)</td>
<td>70.7</td>
<td>76.7</td>
</tr>
<tr>
<td>70–105kg</td>
<td>94.0<sup>a</sup></td>
<td>88.9<sup>b</sup></td>
</tr>
<tr>
<td>Haiyō length I</td>
<td>77.8<sup>a</sup></td>
<td>74.1<sup>b</sup></td>
</tr>
<tr>
<td>Haiyō length II</td>
<td>68.0<sup>a</sup></td>
<td>63.5<sup>b</sup></td>
</tr>
<tr>
<td>Loin length</td>
<td>51.1<sup>a</sup></td>
<td>46.8<sup>b</sup></td>
</tr>
<tr>
<td>Carcass width</td>
<td>36.1</td>
<td>35.3</td>
</tr>
<tr>
<td>Number of TV<sup>1)</sup></td>
<td>14.7<sup>a</sup></td>
<td>14.1<sup>b</sup></td>
</tr>
<tr>
<td>Number of LV<sup>2)</sup></td>
<td>6.3</td>
<td>6.0</td>
</tr>
<tr>
<td>Backfat thickness</td>
<td>Shoulder</td>
<td>4.7<sup>a</sup></td>
</tr>
<tr>
<td>Back</td>
<td>2.4<sup>a</sup></td>
<td>1.8<sup>a</sup></td>
</tr>
<tr>
<td>Loin</td>
<td>4.2<sup>a</sup></td>
<td>3.0<sup>a</sup></td>
</tr>
<tr>
<td>Loin eye area</td>
<td>5–6th TV<sup>1)</sup></td>
<td>21.5<sup>a</sup></td>
</tr>
<tr>
<td>12–13th TV</td>
<td>31.4<sup>b</sup></td>
<td>39.2<sup>a</sup></td>
</tr>
<tr>
<td>last TV</td>
<td>30.6<sup>b</sup></td>
<td>38.9<sup>a</sup></td>
</tr>
<tr>
<td>Carcass parts weight</td>
<td>Shoulder (%)</td>
<td>33.6<sup>ac</sup></td>
</tr>
<tr>
<td>Loin and belly (%)</td>
<td>23.5<sup>a</sup></td>
<td>19.2<sup>c</sup></td>
</tr>
<tr>
<td>Ham (%)</td>
<td>43.0<sup>b</sup></td>
<td>44.7<sup>a</sup></td>
</tr>
</tbody>
</table>

^{a,b,c} Means within the same row with different superscripts are significantly different at P<0.05 for breeds.
^d Means within the same row with different superscripts are significantly different at P<0.05 for sex.
¹⁾ Thoracic vertebra. ²⁾ Lumber vertebra.
これに対し、B種は検定開始の30kg日齢、70kgおよび105kg日齢のいずれも劣った。D種は肥育前期の発育はLDD、LDBと同程度だったが、肥育後期はB種と同程度まで低下した。これは肥育後期の時期が12月から1月の平均気温が5℃以下の時期であり、暖房もなく、単調の条件がかなり影響したためと思われる。産肉形質を見る限り、LD飼豚に配した豚豚の影響がかなり大きいことが明らかとなった。すなわち、LDBはLDDと比べ皮下脂肪厚が厚く、ロース断面積が小さかった。また、第5〜6胸椎間、最後胸椎部位で分割した枝肉の重量割合についてみると、LDDとD種はLDBとB種に比べカタとモノの割合が高く、一方ロース・バラの割合が低かった。これらは、LDBとB種は腹部への脂肪の蓄積がかなり多かったためであり、精肉歩留まりが低くなることが示された。

Table 3 には皮下脂肪と筋肉内脂肪の脂肪酸組成割合を示した。皮下脂肪内層、外層とも多くの脂肪酸組成割合で品種間差が認められ、LD飼豚に配した豚豚の影響が大きいことが示唆された。すなわち、LDBとB種はLDDとD種と比べ、パルミチン酸やステアリン酸などの飽和脂肪酸が多く、オレイン酸やリノール酸などの不飽和脂肪酸が少ない。一方、筋肉内あるいは筋肉間脂肪の脂肪酸組成ではステアリン酸では品種間差が認められず、パルミチン酸でもLDDだけがLDB、DおよびB種より有意に高かった。そして、オレイン酸は皮下脂肪内層、外層と同様にLDDとD種がLDBとB種より高いが、リノール酸は逆にLDBとB種がLDDとD種より高いあるいは高い傾向を示した。

Table 2 には肉質形質の結果を示した。ドリップロスについては24時間では品種の差が認められず、48時間後に品種間差が認められ、B種が最も優れ、次いで、LDB、D種の順であり、LDDが最も悪かった。しかし、加熱損失率ではLDBが最も悪くD種が最も優れた。筋肉内脂肪含有ではLDDとD種が多く、B種が最も少なかった。肉の物理的特性のうち、TendernessはLDDとLDBが最も低く同程度でD種、B種の値が高く肉が硬いことが示された。

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Least squares means for meat quality traits of breeds and sex.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Breed</td>
<td>Sex Stochastic significance</td>
</tr>
<tr>
<td>Meat color PCS</td>
<td>Barrows</td>
</tr>
<tr>
<td>B</td>
<td>D</td>
</tr>
<tr>
<td>L* value</td>
<td>48.03</td>
</tr>
<tr>
<td>a* value</td>
<td>2.92</td>
</tr>
<tr>
<td>b* value</td>
<td>5.39</td>
</tr>
<tr>
<td>Water holding capacity</td>
<td>Drip loss 24hr (%)</td>
</tr>
<tr>
<td>48hr (%)</td>
<td>4.08</td>
</tr>
<tr>
<td>Cooking loss (%)</td>
<td>22.27</td>
</tr>
<tr>
<td>Chemical composition of loin</td>
<td>Water (%)</td>
</tr>
<tr>
<td>Fat (%)</td>
<td>3.18</td>
</tr>
<tr>
<td>Marbling score</td>
<td>3.08</td>
</tr>
<tr>
<td>Tenderness (kg/cm²)</td>
<td>90.69</td>
</tr>
<tr>
<td>Pliability</td>
<td>1.46</td>
</tr>
</tbody>
</table>

abc Means within the same row with different superscripts are significantly different at P<0.05 for breeds.

de Means within the same row with different superscripts are significantly different at P<0.05 for sex.
Table 3 Least squares means for fatty acids component of breeds and sex.

<table>
<thead>
<tr>
<th>Breed</th>
<th>Sex</th>
<th>Statistical significance</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Barrows</td>
<td>Gilts</td>
</tr>
<tr>
<td>Inner backfat</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14:0</td>
<td>1.33ab</td>
<td>1.08c</td>
</tr>
<tr>
<td>16:0</td>
<td>25.78a</td>
<td>23.30b</td>
</tr>
<tr>
<td>16:1</td>
<td>1.43ab</td>
<td>1.45b</td>
</tr>
<tr>
<td>17:0</td>
<td>0.55ab</td>
<td>0.47b</td>
</tr>
<tr>
<td>17:1</td>
<td>0.32</td>
<td>0.23</td>
</tr>
<tr>
<td>18:0</td>
<td>18.01a</td>
<td>15.63b</td>
</tr>
<tr>
<td>18:1</td>
<td>40.77b</td>
<td>43.45a</td>
</tr>
<tr>
<td>18:2</td>
<td>8.76b</td>
<td>10.60a</td>
</tr>
<tr>
<td>18:3</td>
<td>0.44b</td>
<td>0.50a</td>
</tr>
<tr>
<td>20:0</td>
<td>0.30b</td>
<td>0.36a</td>
</tr>
<tr>
<td>20:1</td>
<td>1.10b</td>
<td>1.37a</td>
</tr>
<tr>
<td>20:2</td>
<td>0.55b</td>
<td>0.65a</td>
</tr>
<tr>
<td>U/T</td>
<td>53.73b</td>
<td>58.75a</td>
</tr>
</tbody>
</table>

Outer backfat

14:0	1.42ab	1.25c	1.51a	1.36bc	1.39 1.38	** ns ns
16:0	24.78a	22.11c	23.43a	23.57a	24.33 23.62	*** ns ns
16:1	1.91ab	1.73b	2.07a	2.11a	1.99 1.92	** ns ns
17:0	0.58ab	0.43b	0.64a	0.42b	0.54 0.50	** ns *
17:1	0.39ab	0.36b	0.46a	0.35a	0.39 0.36	* ns ns
18:0	14.47a	13.01b	14.64a	13.09b	13.94 13.67	*** ns **
18:1	43.02b	46.03a	42.81b	45.26a	44.09 44.47	*** ns *
18:2	10.03b	11.06a	9.28a	10.36ab	9.87a 10.49a	* ns
18:3	0.53bc	0.60a	0.51c	0.56ab	0.53a 0.57a	** * ns
20:0	0.24	0.28	0.26	0.28	0.28a 0.24a	ns * ns
20:1	1.05	1.15	1.06	1.01	1.09 1.05	ns ns ns
20:2	0.61b	0.70a	0.54c	0.58bc	0.59 0.63	** ns ns
U/T	58.09b	62.41a	57.18b	60.86a	59.13 60.14	*** ns *

Intramuscular fat

14:0	1.38	1.35	1.49	1.33	1.41 1.36	ns ns ns
16:0	25.83b	25.43a	27.00a	25.78b	26.53a 25.49a	* ** ns
16:1	3.08b	3.31ab	3.64a	3.38ab	3.45 3.26	* ns ns
17:0	0.26ab	0.19b	0.32a	0.20b	0.25 0.23	* ns ns
17:1	0.20b	0.18b	0.27a	0.20b	0.23a 0.19a	* * ns
18:0	13.56	12.69	13.07	12.70	13.23 12.78	ns ns ns
18:1	43.33b	46.67a	43.60a	47.39a	45.16 45.34	*** ns ns
18:2	7.02b	5.99b	6.28ab	5.41b	5.81a 6.54a	* * ns
18:3	0.22	0.20	0.21	0.23	0.22 0.21	ns ns ns
20:0	0.19	0.20	0.20	0.21	0.20 0.20	ns ns ns
20:1	0.67b	0.77a	0.69ab	0.75a	0.73 0.71	* ns ns
20:2	0.26	0.27	0.25	0.26	0.24a 0.28a	ns * ns
20:3	0.24	0.22	0.21	0.20	0.20 0.23	ns ns ns
20:4	1.41b	1.04b	1.07b	0.81b	0.94a 1.23a	* * ns
U/T	57.80bc	59.54a	57.21c	59.32ab	57.78 59.15	* * ns

a,b,c Means within the same row with different superscripts are significantly different at P<0.05 for breeds.

de Means within the same row with different superscripts are significantly different at P<0.05 for sex.

1) U/T : The ratio of unsaturated fatty acids to total fatty acids.
Table 4 Results of consumer panels test.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>A</td>
<td>B</td>
<td>LDD</td>
<td>A</td>
</tr>
<tr>
<td>n</td>
<td>32</td>
<td>23</td>
<td>30</td>
<td>22</td>
</tr>
<tr>
<td>Tenderness</td>
<td>3.35</td>
<td>4.30</td>
<td>4.13</td>
<td>3.70</td>
</tr>
<tr>
<td>Flavor</td>
<td>3.25</td>
<td>3.52</td>
<td>3.26</td>
<td>2.63</td>
</tr>
<tr>
<td>Unpleasant smell</td>
<td>1.09</td>
<td>1.35</td>
<td>1.43</td>
<td>1.53</td>
</tr>
<tr>
<td>Meat color</td>
<td>2.78</td>
<td>3.26</td>
<td>2.87</td>
<td>2.43</td>
</tr>
<tr>
<td>Juiciness</td>
<td>2.87</td>
<td>4.18</td>
<td>3.96</td>
<td>3.13</td>
</tr>
<tr>
<td>Elasticity</td>
<td>3.22</td>
<td>4.04</td>
<td>3.74</td>
<td>3.43</td>
</tr>
<tr>
<td>Marbling</td>
<td>2.26</td>
<td>3.83</td>
<td>3.43</td>
<td>2.23</td>
</tr>
<tr>
<td>Deliciousness</td>
<td>3.70</td>
<td>4.18</td>
<td>4.13</td>
<td>3.70</td>
</tr>
</tbody>
</table>

5点法で評価した。値はその平均値である。12月4日にはLDB、LDDと市場の鈴木豚の3種類の肉を比較した。軟らかさ、コク、多汁性、サシの点で市場の鈴木豚よりLDB、LDDの評価が高かったが、総合評価のおいしさでは明確な差が認められなかった。12月11日にはB、LDB、LDDの3種類の肉を比較した。軟らかさではB種よりLDD、LDBの肉が軟らかく、コク、サシの量ではLDDが最も優れ、総合評価でもLDDがLDB、B種より評価が高かった。3回目の1月16日ではB種とD種が生肉、LDBとLDDは凍結後解凍した肉を使用した。生肉と凍結解凍肉では軟らかさ、香り、多汁性、総合評価のおいしさの点で明確な差が認められた。生肉の比較であるB種とD種とはサシの量でだけ差が認められた。

4回目の1月19日には3回目と同じ組み合わせで行った。今回は生肉と冷凍解凍肉の差が明確でなかった。軟らかさではD種が他の品種より評価が高かった。また、香り、多汁性、サシの量、総合評価のおいしさでもD種が他の品種より評価が高かった。

以上の結果をまとめると、肉質形質のうち重要なと思われるTendernessではLDD=LDB＞B=D、筋内肉脂肪ではLDD=D＞LDB=Bの順に、また、ドリッププロスではB=LDB>D=LDD、さらに加熱損失率ではD>B>LDD>LDBの順に優れることが示唆された。これらの肉の食味テストの結果では主として軟らかさと総合的においしさから、1、2回目の食味テストではLDB＞LDB＞B，2、3回目の食味テストではD>B>LDD=LDBの傾向が示唆された。食味テストの結果を肉質形質の品種比較結果と関連させると筋肉内脂肪に加え加熱損失率が重要な形質であることが示唆された。

4. 要約

豚肉質の客観的測定形質と主観的な食味テストにおける食味性がどの程度相関するかを明らかにするため、パークシャー種（B）とデュエロック種（D）の純粋種およびラードレース種とこれらの交雑豚（LDD、LDB）の去勢と雌豚合計37頭を用い比較検討した。最後胸椎から3胸椎分前のロース肉について、肉色（PCS、L*、a*、b*）、ドリッププロス、加熱損失率、化学成分（水分、脂肪）、マーブリングスコア、物理的特性（Tenderness、Pliability）、皮下脂肪および筋肉内脂肪の脂肪酸組成を測定した。また、消費者モニター103名による食味テストを実施した。軟らかさ、香り、豚臭さ、肉色、多汁性、弾力性、総合的においしさについて品種間の比較を行った。ドリッププロス、加熱損失率、水分と脂肪、物理的特性値で品種間差が認められ、軟らかさではLDDと
LDBがBとDより軟らかく、筋肉内脂肪ではLDDとDがLDBとBより有意に多い。また、ドリップロースではBがDとLDDより優れが、加熱損失率ではDとBがLDDとLDBより優れた。食味テストの結果では主として軟らかさと総合的なおいしさから、1，2回目の食味テストではLDD>LDB>B，3，4回目の食味テストではD>B>LDD=LDBの傾向が示唆された。食味テストの結果を肉質形質の品種比較結果と関連させると筋肉内脂肪に加え加熱損失率が重要な形質であることが示唆された。

文献
1) 小川ゆう子，鈴木啓一，阿部博行，鹿野裕志，伊藤勝，魚油および酸米添加飼料が豚の肉質に及ぼす影響，日本畜産学会誌，35：98-106，1998。
2) 石田光晴，今野義博，鈴木啓一，小川ゆう子，阿部博行，n-3系脂肪酸を含む魚油添加飼料給与による豚肉脂質および呈味成分への影響，日本食品科学工学会誌，43：1219-1226，1996。
3) 鈴木啓一，阿部博行，小川ゆう子，石田光晴，清水隆弘，鈴木 悟，3元交雑豚の肉質に及ぼす止め雄品種の影響，日本畜産学会誌，68：310-317，1997。
4) 鈴木啓一，清水ゆう子，阿部博行，内村直子，鈴木 悟，豚肉質の品種間，性別および胸最長筋部位間の比較，日畜会報，72：J215-J223，2001。
The Immunohistochemical Property of Intramuscular Connective Tissue
— The influence of cooking —

Shoji Tabata, Shotaro Nishimura and Hisao Iwamoto
(Faculty of Agriculture, Graduate School, Kyushu University)

The biceps femoris muscles and thoracic longissimus muscles of Japanese Brown steers were utilized in the present study, in order to demonstrate the influence of the cooking to the collagen fibers in meats. Immunohistochemical method was applied for the specimens to know the existence of the several collagenous proteins. The immunoreactivity against fibronectin was not confirmed at any boiling period in the present study. After boiling for 30 seconds, the immunoreactivity against type I was weakened, while type III was almost disappeared in the endomysium where the immunoreactivity against them was still observed in the perimysium. At this boiling period, the immunoreactivity against the type IV collagen and laminin was still observed on the external lamina surrounding muscle fibers. We focused on the type I collagen after boiling for 3 minutes. The immunoreactivity against it was gradually disappeared from the deeper region of the muscle to the superficial region of it. The immunohistochemical reactivity against almost all antisera that were utilized in the present study was almost disappeared after boiling for 10 minutes. However, weak immunoreactivity against the type IV collagen was still observed on the external lamina surrounding muscle fibers after the treatment of boiling for 10 minutes.

1. はじめに

今から100年ほど前、日本人研究者の池田菊苗は昆布のおいしさをグルタミン酸によるものと見いだし、うま味と名付けた（山本隆，2001）。以来我々は経験的にはこのうま味の存在を信じてきただが、それを科学的手法で証明することはなかった。ところが最近哺乳動物の味蕾細胞にはこのうま味に対する受容体が存在するという報告がなされ（Chaudhari et al., 2000）、うま味（umami）という味要素が世界的にも認知されるようになっただ。うま味はグルタミン酸によってもたらされ、舌に存在する味蕾細胞にはこのうま味に対する受容体が存在し、我々はうま味成分を含んだ食品（本論文では食肉と言い換える）を摂食し、味覚認知を行うのであろう。それでは食肉中におけるうま味成分とはいったい何であろうか。食肉を十分な時間煮た後、室温に戻すと煮汁にはゼラチンが沈殿する。これは細胞外基質の膠原線維が食肉から溶けだしたものと思われる。膠原線維タンパク（以下コラゲン）は哺乳動物において最も多く含まれ、その分子構造中には多くのグルタミン酸を含んでいる（Ayad et al., 1998）。本報告では細胞外基質の大部分を占めるコラゲンがうま味成
分と成り得るのではないかという推測に立ち、調理後の変化を形態学的に証明を試みたものである。

2. 材料および方法

本研究には、褐毛和種雄去勢牛（24か月齢）を用いた。材料肉には大腿二頭筋および胸長筋を用いた。大腿二頭筋については2 cm立方に切り出し、沸騰水中で30秒、3分および10分間煮た。試料を沸騰水から取り出し、濾纸上で表面の水分をとり、ドライアイスで冷却したアセトン液中に投入し凍結した。胸長筋については2 cm厚に切り出し、家庭用のフライパンを用いて両面を焼いた後、同様に濾紙上で表面の油分をとり、2 cm立方に細切し、同様にして凍結した。クリオスタットを用いて厚さ10μmの切片を作成し、スライドグラスに張り付けた後、風乾し、PBSで洗浄した。1次抗体にはⅠ型コラゲン、Ⅲ型コラゲン、Ⅳ型コラゲンに対する抗体、およびラミンとフィブロネクチンに対する抗体を用いた。PBS洗浄後、FITC化ウサギ抗血を処理し、PBS洗浄および封入した。組織標本観察および撮影にはニコン RCM-8000蛍光顕微鏡を用いた。

3. 結果および考察

我々のこれまでの研究成果により以下の事柄が

Fig. 1 The biceps femoris muscle that is boiled for 30 seconds.

After boiling for 30 seconds, the immunoreactivity against type I is weakened (fig. 1-a), while type III was almost disappeared (fig. 1-b) in the endomysium where the immunoreactivity against them is still observed in the perimysium. At this boiling period, the immunoreactivity against the type IV collagen and laminin is still observed on the external lamina surrounding the muscle fibers (fig. 1-c and -d). The immunoreactivity against the fibronectin is almost disappeared. The scale bar indicates 50 μm.
明らかになっている。すなわち、I型およびIII型コラーゲンは線維性コラーゲンに分類され（Olsen and Ninomiya, 1998），生体の骨格筋において、筋内膜および筋周膜に豊富に存在している。基底膜コラーゲンに分類されるIV型コラーゲンおよびコラーゲン関連性タンパクであるラミニンは筋組織中において、筋線維周囲の外板（上皮の基底板に相当する）に存在する。同じくコラーゲン関連性タンパクであるフィブロネクチンは筋組織中では筋内膜および筋周膜に認められる（田畑正志他, 1999）。大腿二頭筋を30秒間沸騰水中で煮た標本において、I型およびIII型コラーゲンは若干の染色性の低下が認められたが、依然筋内膜および筋周膜にその反応が認められた（Fig. 1-a および-b）。IV型コラーゲンおよびラミニンは外板に相当する部位に強い反応が認められた（Fig. 1-c および-d）。フィブロネクチンは熱処理による影響を最も受けやすく30秒の処理後に著しい反応の低下が認められ（Fig. 1-e），これより長い熱処理では免疫反応がほとんど認められなかった。3分間沸騰水中で煮ると、線維性コラーゲンのうちIII型コラーゲンにおいて筋組織中からの流出に伴う，染色性の著しい低下が認められた。I型コラーゲンも組織表面近くでは流出に伴う染色性の低下が認められたが、組織深部において依然存在していた（Fig. 2）。IV型コラーゲンおよびラミニンは3分間沸騰水中で煮てもその染色性は他のタンパクに比べて強く残っていた。Fig. 2は3分間沸騰水中で煮た後のI型コラーゲンの食肉表面から深層における部位的な変化を示したものである。表層では筋線維の外板に相当する部分にわずかな免疫反応が残っているだけである。特にこの部位では筋周膜の結合組織は完全に消去していた。これに対して筋線維は若干の収縮は認められるが、食肉の最表面でも消去することなく残っていた。このことは食肉を煮ることによって柔らかくなるのは主に筋内膠原線維の消去によるものと想像される。

一方、鉄板を用いて食肉を焼くと，最表層の部分は免疫性を完全に失ってしまうが，やや深層に向かうとフィブロネクチンを除いて免疫反応性が

Fig. 2 The type I collagen in the biceps femoris muscle after boiling for 3 minutes. The immunoreactivity against the type I collagen was gradually disappeared from the deeper region of the muscle (fig. 2-a) to the superficial region of it (fig. 2-d). The scale bar indicates 50 μm.
残っていることが明らかになった（Fig. 3）。ただし、筋周間を構成する膠原線維の内III型コラゲンの消失はI型コラゲンと比較するとやや早急に起こることが明らかになった。しかし、フライパンを用いた食肉の熱処理は深部の膠原線維を流出させることなく、沸騰水中で煮る処理に比べて肉を十分に柔らかくするような作用は少ないことが明らかになった。

4. 要約

牛大腿二頭筋および胸長筋の調理処理による各型コラゲンおよびコラゲン関連タンパクの影響について免疫組織化学的手法を用いて研究を行った。沸騰水中で食肉を煮ると30秒で、食肉表面からの線維性コラゲンであるI型およびIII型コラゲンが流出し始めた。3分間煮ると最深部を除きこれら線維性コラゲンは流出し、10分間煮るとほとんどどの線維性コラゲンは食肉中から消失した。基底膜コラゲンであるIV型コラゲンは筋線維の外板に相当する部位に存在し、熱処理の影響をあまり受けないことが明らかになった。一方、フライパンで焼く処理を行うと表層の線維性コラゲンは流出するが、内部に存在する結合組織はあまり影響を受けていなかった。すなわち、我々が食肉を調理して食する際、胸長筋のような筋内膠原線維の発達の悪い比較的柔らかい肉はフライパンで焼くだけで十分柔らかでおいしく摂食されるのであろう。一方、大腿二頭筋のような筋内膠原線維の発達が比較的良好な、やや堅い肉を利用する際にはフライパンで焼く調理法では肉の柔らかさはもたらされないのであろう。この種の肉をよりおいしく摂食するにはよく煮る調理法を用いて筋内結合組織を煮出すことによって柔らかくすることができるのであろう。そして、この際煮汁に流出したコラゲンはうま味として味覚認知される成分となるものと想像される。
文献
Dry-cured hams were produced on the climate of Tokachi prefecture and analyzed the properties of them. Fresh hams were prepared 24 hr after slaughter and dry-cured. The starting time of curing was October to February because of low temperature and dry season. Temperature from December to March in outsides was below 0 °C and became to −30°C sometimes, so, heating system was necessary to not freeze and moisture was supplied at the sametimes.

The condition of dry curing and drying at the cold temperature suppressed the putrefaction of hams during the hot summer. At the time of drying and ripening in summer, mold grow on the surface of hams at the over 15°C, but growing of mold was suppressed at the low humidity below 60 RH%. This result brought low bacterial counts on the surface and bacterial counts in inside of hams decreased to 0 or below 300. Increment of peptides and free amino acids during the drying and ripening was felt good taste and flavor even 8 % sodium chloride.

1. 目 的

わが国において食肉加工品の消費はあまり増加していないが、その中でも非加熱食肉製品であるいわゆる生ハム（ラックスハム）は順調に消費を伸ばしている。また、骨付きタイプの生ハムは1996年にイタリアのパルマハムが、また、2000年からはスペインのセラーノハムが輸入され、その数が増加している。これらにフランスのパヨンヌハムを加え世界の三大生ハムと呼ばれている。食肉製品の生ハムとも称される生ハムは、長い熟成期間に芳醇なフレーバー、美しい色調やとろけるような脂肪と肉質がマッチして美味しさがあり、ヨーロッパでは優れた生ハムは原産地呼称制度により、厳しい条件のもとで生産管理されている。生ハムの品質は豚の血統、年令、体重、皮下脂肪の厚さ、飼育法、と畜条件および生肉の冷蔵方法などが大きく関与し、この中でも最も重要な点は生肉と熟成条件であると言われている1,2)。

これらの、本格的な骨付生ハムは1〜2年の乾燥・熟成期間を要し、さらにわが国では生産技術も確立していないため、生産量が少ない。生ハムの製造には漂白すった空気、畑や牧場など良好な自然環境が大切な条件である。

本研究は十勝の自然環境のもとで乾塩ハムを製造し、その性質を調べることを目的とした。
2. 実験材料および方法

2.1 供試豚もも肉

帯広市内の食肉処理業者より、と畜24時間後の骨付き豚もも肉（10〜11kg，L×W×D種，6カ月齢，生体重120kg）を入手した。

2.2 乾塩ハムの製造

塩漬けは、骨付き豚もも肉重量に対して食塩50%，食塩重量に対して発色剤（ニーワ硝素，千代田商会）0.2%，砂糖0.5%，胡椒0.5%の塩漬け剤を調製し，乾塩法で3週間行った。この間時々反転しながら塩漬けが良く浸透するように注意した。

次に，食塩をかくく取り除き，紐で吊して，熟成庫で3カ月間乾燥させた。なお，熟成庫内は扇風機で空気を循環させ，外気には有硫気扇口を付け，乾燥と換気に使用した。12〜3月までの外気温が氷点下となる時期には，電熱器を用いて，熟成庫を0〜6℃に保つように調整した。また電熱器の上に金属板の蒸発皿を置き，湿度を60%前後に保持した。

3.5カ月目に肉表面を冷水で洗浄して塩を取り除いた。5カ月目に表面に食塩2.0%と胡椒1%を含む豚背脂肪のパティーを，赤肉の露出している表面に塗り込んだ。生ハムの乾燥・熟成は，表面の観察と熟成庫内の温度・湿度を計測し，換気等にも注意しながら，合計1年または1年半行った（Fig.1）。

2.3 表面の微生物検査

ハム表面の微生物については試料取り法により行った。9cm²を綿棒で取り，9mlの滅菌希釈水に懸濁した。一般生菌数（標準寒天培地；栄研），乳酸菌数（MRS寒天培地；OXOID），大腸菌群（クロモカルトCOLIFORM寒天培地；MERCK），サルモネラ菌（推定試験はDHL寒天培地；栄研），黄色ブドウ球菌（推定試験はフォーゲルジョンソン培地；栄研），確認試験はウサギプラズマ；栄研），カビおよび酵母（ポテトデキストロース寒天培地；栄研）などの検査を行った。

2.4 内部の微生物検査

ハム内部の微生物については，中心部分を切断し，表面から汚染されないように注意深く試料を

Fig. 1 Temperature and humidity during the ripening of Urikarippu ham
切り出した。分析は大腿二頭筋（BF）、大腿四頭筋（QF）、半膜様筋（SM）および半腱様筋（ST）の4部位について行った。分析項目は表面と同様の項目について行った。

2.5 理化学的検査
（1）水分含量 薄切りにした試料2〜3gを精密称し、加熱乾燥（115°C）で恒量になるまで行った。
（2）ホモジネット液およびその上澄みの調製試料13gを蒸留水で10倍希釈し、水水中でホモジナイズした。これを遠心分離（40,000×G, 0°C, 20分）し、東洋ろ纸No.5Cでろ過した。
（3）pHの測定 上記で得られたろ液5mLを測定した。
（4）食塩濃度の測定 上記で得られたろ液25mLをさらに2倍希釈し、ZENNKENN食塩メーターを用いて測定した。
（5）ペプチド量 上記で得られたろ液4mLに等量の4％TCA溶液を等量混合した。これを37°Cで30分間保持した後、ろ過して得られた2％TCA可溶性画分を、ペプチド量の分析に供し、測定はローリー法で行った。定量のための検量線には、牛血清アルブミンを標準物質として用いた。
（6）遊離アミノ酸量 ペプチド量分析に用いた2％TCA可溶性画分を試料とした。測定は日本分光㈱製アミノ酸分析機（New 8000シリーズ）を用いて、遊離アミノ酸をオルトフタルアルデヒド試薬による蛻光で検出した。タンパク質を構成している19種類の遊離アミノ酸の合計を総遊離アミノ酸量とした。
（7）亜硝酸根濃度 細切試料5gを沸騰蒸留水30mLでホモジナイズし、0.5N水酸化ナトリウム溶液5mL、12％硫酸亜鉛溶液5mLを加え80°Cで20分間加熱した。これを冷水で室温まで冷却し、10％酢酸アンモニウム緩衝液10mLを加え、蒸留水で100mLに定容したものに10分間室温に放置した。このうち一部を遠心分離し（4,500rpm, 15分）、東洋ろ紙No.5Cでろ過ごしたものを検液とした。発色はスルファニルアミド溶液およびナフチルエチレンジアミン溶液を加え、540nmの吸光度を測定した。

2.6 官能検査
学内の教職員および学生延べ194人により、5点評価法で行った。

3. 結果と考察
3.1 表面の微生物
ハム表面の細菌検査の結果を、Table 1 に示した。一般生菌数は縦の部分Aで多く、最も多かったのは試料3で7.8×10⁵cfu/cm²であった。一般的には30以下から10⁶cfu/cm²までのものが多く、主な細菌はBacillusとMicrococcusであった。大腸菌群も縦の部分に存在し、試料2では7.3×10⁵cfu/cm²、試料3では30以下がみられだが、他のすべては陰性であった。乳酸菌数はTable 2に示した。試料1ではDの部分で3.5×10⁶cfu/cm²、試料3では縦の部分で5.5×10⁵cfu/cm²と

<table>
<thead>
<tr>
<th>Place</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><30</td>
<td>1.4×10⁵</td>
<td>7.8×10⁴</td>
<td>4.5×10⁴</td>
<td>7.0×10⁴</td>
</tr>
<tr>
<td>B</td>
<td>5.5×10⁵</td>
<td>0</td>
<td>6.4×10³</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>C</td>
<td>6.3×10³</td>
<td>9.0×10¹</td>
<td>5.2×10¹</td>
<td>5.5×10³</td>
<td><30</td>
</tr>
<tr>
<td>D</td>
<td>7.0×10¹</td>
<td>3.6×10²</td>
<td>5.0×10¹</td>
<td>4.2×10¹</td>
<td><30</td>
</tr>
</tbody>
</table>

Common bacteria（cfu/cm²）

<table>
<thead>
<tr>
<th>Place</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-</td>
<td>7.3×10²</td>
<td><30</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Coliform group（cfu/cm²）
多くのみられたものがあったが、大部分は30以下のものであった。また、糸の部分でカビが多くみられた。このように糸の部分で汚れていたのは、夏期の熟成中にカビが発生したり、その後の拭き取りが不十分となるため細菌も生育したものと考えられた。このため、2年目の初夏より晚秋まで気温の高い時期に除湿機の使用により、その後カビの発生を抑えることができた。この結果、試料4および5でみられるように、一般生菌数は10^3cfu/cm^2 または30以下となった。

Table 2 Lactic acid bacterial counts of the surface on Uirikappu ham

<table>
<thead>
<tr>
<th>Place</th>
<th>Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td><30</td>
<td><30</td>
<td><5.5x10^2</td>
<td><30</td>
<td><30</td>
</tr>
<tr>
<td>B</td>
<td>3.4x10^1</td>
<td><30</td>
<td>3.4x10^2</td>
<td>0</td>
<td><30</td>
</tr>
<tr>
<td>C</td>
<td>6.2x10^1</td>
<td><30</td>
<td><30</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>3.5x10^4</td>
<td>2.5x10^4</td>
<td>0</td>
<td>0</td>
<td><30</td>
</tr>
</tbody>
</table>

3.2 内部の微生物

ハム内部の細菌数の結果をTable 3に示した。

Table 3 Bacterial counts of the inside in Uirikappu ham

<table>
<thead>
<tr>
<th>Muscle Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td><300</td>
<td><300</td>
<td>4.5x10^2</td>
<td><300</td>
</tr>
<tr>
<td>QF</td>
<td>8.0x10^2</td>
<td>3.0x10^2</td>
<td>2.1x10^2</td>
<td><300</td>
</tr>
<tr>
<td>SM</td>
<td><300</td>
<td>0</td>
<td>4.4x10^1</td>
<td><300</td>
</tr>
<tr>
<td>ST</td>
<td>4.2x10^2</td>
<td><300</td>
<td>2.1x10^2</td>
<td><300</td>
</tr>
</tbody>
</table>

Common bacteria (cfu/g)

<table>
<thead>
<tr>
<th>Muscle Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>QF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ST</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Coliform group (cfu/g)

<table>
<thead>
<tr>
<th>Muscle Sample 1</th>
<th>Sample 2</th>
<th>Sample 3</th>
<th>Sample 4</th>
<th>Sample 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>QF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SM</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>ST</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

多くのみられたものがあったが、大部分は30以下のものであった。内部の大腸菌群はすべて陰性（Table 3）。この他サルモネラ菌およびプドウ球菌も同様に陰性であった。乳酸菌数は示していないが、試料1のQFで5.5x10^2cfu/gで、その他はすべて300以下または0であった。

Rodriguezら30）によると、イベリアハムの乾燥・熟成中に表面（最高10^5cfu/g）や内部（最高10^4cfu/g）の細菌数は増殖するが、その後減少し、内部では450日、表面では700日目には0となることを報告した。また、この時の主な細菌はStaphylococcus xylosusであったと報告している。これらのことから、表面の細菌はMicrococcaceaeが主で、熟成後期には減少または0となることなど類似した結果であった。

表面のカビは、塩漬け後の乾燥中に表面に生育し、Rojasら40）やNúñezら50）によるとイベリアハムの表面のカビの中にマイクトキシンを産生するものを報告し、健康障害を防ぐためにある種のカビを、スターターカルチャーとして使用することを提案している。

骨付きハムのJSA規格によると、カビの生えているものは採点の基準が低くなり、上述の報告などから、カビを生育させないほうが安全であり、良い結果をもたらすと言える。

3.3 内部の理化学的検査

理化学的検査では1年熟成と1年半熟成ではどのように差があるかを知るため、水分含量、pH、食塩濃度、水分活性（Aw）、亜硝酸根についてそれぞれ分けて、Table 4に示した。

（1）水分含量 1年熟成では50.0～53.9％、1年半熟成では50.0～53.9％、1年半熟成した方が水分含量は僅かに低い傾向にあった。また、STの水分含量は一般的に他の部位と比べて僅かに少なかったのは、サンにより脂質が多いことによると考えられた。Rodriguezら50）は8カ月熟成したイベリアハムのBFサンプルで51.23％、
Table 4 Some properties of Urikarippu ham

<table>
<thead>
<tr>
<th>Muscle Water (%)</th>
<th>pH</th>
<th>NaCl (%)</th>
<th>Aw</th>
<th>Nitrite (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF 53.9±3.2</td>
<td>5.9±0.1</td>
<td>7.9±0.5</td>
<td>0.86</td>
<td>0.6±0.3</td>
</tr>
<tr>
<td>QF 52.1±0.1</td>
<td>5.8±0.2</td>
<td>7.9±0.4</td>
<td>0.86</td>
<td>0.7±0.5</td>
</tr>
<tr>
<td>SM 54.3±2.3</td>
<td>5.9±0.2</td>
<td>7.5±0.5</td>
<td>0.85</td>
<td>0.4±0.2</td>
</tr>
<tr>
<td>ST 50.0±0.8</td>
<td>5.9±0.1</td>
<td>7.1±0.4</td>
<td>0.85</td>
<td>0.6±0.2</td>
</tr>
</tbody>
</table>

1 year sample : average±SD.

<table>
<thead>
<tr>
<th>Muscle Water (%)</th>
<th>pH</th>
<th>NaCl (%)</th>
<th>Nitrite (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BF 49.8±0.7</td>
<td>5.8±0.0</td>
<td>8.7±0.4</td>
<td>0.9±0.2</td>
</tr>
<tr>
<td>QF 51.4±1.2</td>
<td>5.8±0.1</td>
<td>8.7±0.1</td>
<td>0.6±0.5</td>
</tr>
<tr>
<td>SM 51.6±3.8</td>
<td>6.0±0.1</td>
<td>8.3±1.1</td>
<td>0.7±0.1</td>
</tr>
<tr>
<td>ST 48.1±1.3</td>
<td>5.9±0.1</td>
<td>7.6±0.1</td>
<td>0.8±0.1</td>
</tr>
</tbody>
</table>

1.5 year sample : average±SD.

BF: biceps femoris; QF: quadriceps femoris;
SM: semimembranosus; ST: semitendinosus

16か月では50.37%と報告しており、本実験の結果と類似していた。

(2) pH値 各部位でpH5.8〜6.0の範囲にあり、1年熟成および1年半熟成における差はみられなかった。原料肉のpHは5.6〜6.1であった。本乾塩ハムは乳酸発酵していないことを示していた。

(3) 食塩濃度 1年熟成では7.1〜7.9%，1年半熟成では7.6〜8.7%と1年半熟成の方が僅かに高い値であった。これは乾燥により水分が低いためである。STが水分と同様に他の部位よりも低い値であるのは、脂肪が多く、また厚い皮下脂肪の近くにあるため、食塩濃度は他の部位よりも浸透しにくく、低かったことが考えられた。

わが国における食肉製品、食塩の取りすぎは高血圧や健康によくないと考える考えが一般に広まり、2％以下にまで減塩している。しかし、ヨーロッパにおいて生ハムの塩分は5.5％以上と言われていて、少ない塩分では保存性が低く腐敗しやすい。官能検査では8％でそれほど塩辛さは感じられなかった。これは、後述のように、熟成中のタンパク質の分解によるペプチドや遊離アミノ酸の増加が主な要因と考えられた。

(4) Aw 1年熟成の試料一つだけのデータであるが、部位による差はほとんどなく、0.85〜0.86であった。この値は乾燥食肉製品の値に相当するもので常温保存でも可能であった。16か月のイベリアハムは0.89、8か月では0.90と言う報告よりも低い値であった。一方、Perez-Alvarezらにより、10か月熟成したスペインッシュハムは0.78〜0.848と言う報告もあり、種々の製品のあることが分かる。

(5) 亜硝酸根 各部位とも非常に少なく、0.4〜0.9ppmと低い値であった。このように低い値であったけれども、製品の発色は充分であったが、スライスして放置すると、1〜2日で退色することもあった。塩漬けにおける亜硝酸塩濃度は100ppm、硝酸塩は200ppmであり、食塩濃度から内部に浸透した量を推測すると、亜硝酸塩濃度は8ppm、硝酸塩は16ppmであった。最終製品中では浸透した量の1/10程度で、Perez-Alvarezらの報告した5.93〜12.36ppmよりも低い値であった。

(6) ペプチド量 1年熟成ではハム100g当たり1,844〜1,961mg、1年半熟成では1,750〜2,360mgであった。一般に、1年半熟成した方が高い値であったが、部位間に差がみられた。

(7) 遊離アミノ酸量 総遊離アミノ酸は1年熟成では、QFでハム100g当たり2,992mg、SMでは3,830mgであった。しかし、1年半熟成ではこれよりも少ない値であった。これは後からでき上がった1年熟成のもののが温度の高い条件で熟成されたことによるものと考えられた。

個々の遊離アミノ酸では、グルタミン酸が最も多く約450mg、次いでリジンは約380mg、アラニンは約250mgで、これらが特に増加した。

熟成中に増加するペプチドや遊離アミノ酸はタンパク質の分解により生成するが、その要因はいくつかある。Rodríguezらは、ハムから分離した球菌48種、カビ18種および酵母20種について検
討し、Penicillium chrysogenum と Staphylococcus xylosus はタンパク質の分解に関与していると報告している。また、微生物についての研究は沢山あるが、タンパク質の分解活性はほとんど発見されていない。本実験において、表面の微生物は少なく、また、ほとんどないとため、微生物の関与はないと考えられる。従って、最近の研究者は筋肉内在性のプロテアーゼに焦点をあてている。これらの酵素にはカテーテシン、カルパイン、ペプチダーゼやアミノペプチダーゼなどが含まれる。pH、食塩濃度、水分含量あるいは温度などの要因により左右される。

3.4 官能検査

官能検査の結果は1年熟成と1年半熟成を比べると、1年半熟成のほうがわずかにより評価を得た。色調、匂い、味、風味については、匂いがやや他の項目に比べて低い値であった。総合評価は1年熟成で3.4、1年半熟成では3.6であった。

本研究で行った亜硝酸塩濃度100ppm は、非加熱食肉製品の規格基準200ppm の1/2であったが、これは発色剤を倍にすると解決できる。乾燥・熟成の温度は20℃以下が基準であるが、晩秋から冬の塩漬とその後の乾燥により、微生物の生育を最小限にとどめ、夏期の常温（最高温度34℃）熟成でも問題はなかった。そのうえタンパク質分解酵素の活性化により、ベブチドおよびアミノ酸量の増加で高い塩分濃度でも塩辛さは軽減された。

4. 要約

十勝の自然条件のもとで、骨付き豚もも肉を乾塩法により生ハムを製造し、その性質について分析した。生ハムの原料は、と畜24時間後の新鮮なものを用いた。製造に当たって、10月の低温時期の塩漬とその後の乾燥、12～3月の氷点下の期間は電熱器による加温と加湿、夏期の高温時期は低湿度化によるカビの発生防止により、表面にカビを生やさず微生物数を抑え、美味しい製品を作ることができた。内部の細菌数は熟成に伴う水分の減少や高い食塩濃度の影響により、最高値でも10の2乗と少なかった。大腸菌群、サルモネラ菌、ブドウ球菌はすべて陰性であった。ベブチドと遊離アミノ酸量は熟成により増加し、8％前後の食塩濃度でも塩辛さには抵抗なく、ハムのうま味が感じられた。

文献
Studies on Processing Methods of Restructured Meat Considering with Elderly Mastication

Hiro Ogoshi (Japan Women's University)

The influence of sodium hydrogen carbonate soaking, priority to cooking beef and pork, on the physical properties and on the palatabilities were reviewed. And the compression speed dependence on apparent hardness for trial meat samples were investigated also. Trial meat samples in this study were prepared as follows; 0 mol/l sample was beef and pork meat soaked in distilled water; 0.1, 0.2 and 0.4 mol/l samples were beef and pork meat soaked in each concentration of sodium hydrogen carbonate added to distilled water, respectively.

The apparent hardness of trial meat samples were decreased in accordance with the increase of concentration of sodium hydrogen carbonate soaking.

The apparent hardness of trial meat samples were increased in accordance with the decrease of compression speed. It was reported that the chewing rhythm in complete denture wearers and elderly were extended compared with those in dentate subjects. These results suggested that meat is not desirable food for the elderly and complete denture wearers.

In sensory test, the masticatory tenderness of trial meat samples were increased in accordance with the increase of concentration of sodium hydrogen carbonate soaking. In the beef samples, the bolus of 0 mol/l sample was found more difficult to swallow than trial meat samples which were soaked in sodium hydrogen carbonate. And in the pork samples, 0.4 mol/l sample was found most easy to swallow. The remains (meat fiber) in the mouth of trial meat samples were decreased in accordance with the increase of concentration of sodium hydrogen carbonate soaking. And it was recognized that a lot of the remains in the mouth, such as meat fiber, remained between teeth. Consequently, 0.4 mol/l sample of beef and pork was tender, easy to swallow, remaining little in the mouth, compared with the other trial meat samples.

The present study pointed out the necessity to tenderizing meat, while tenderized meat was easy to chew and eat.

1. 目 的

高齢者の咀嚼機能を考慮した食肉加工品の製造方法に関する研究

エネルギーの低栄養状態（PEM）も認められるので、食肉製品は食質のタンパク質の給源として、高齢者の食事に多く利用されることが望まれる。しかし、食肉製品は加工により咀嚼しにくいテクスチャーとなることが知られており、食肉加工食
品の開発にはおいしくしかも軟らかいテクスチャーをもつ食肉の加工方法の検討が必要である。

食肉の物性や成分、嗜好性に関する研究は切り方をはじめとする調理方法の観点から行われている。また、食肉の軟化操作については、プロテアーゼによる酵素処理、重曹によるアルカリ処理が有効であることが知られている。また、山本によれば、義歯装着者や高齢者は若年の健常有歯齲者に比べ、咀嚼能率の低下が認められ、赤に咀嚼周期が長くなる傾向にあると報告されている。そこで本研究では、食肉の軟化剤として重曹（炭酸水素ナトリウム）に着目し、食肉の物性および嗜好性に対する浸漬の重曹濃度の影響を検討した。さらに、歯齲速度との関連性をみるために、圧縮速度とテクスチャー特性の関連性についても併せて検討した。

2. 実験方法

2.1 試料および調製方法

実験に用いた肉の部位は、牛肉サーロイン部分、豚肉ロース部分（株式会社日三ハム）である。それぞれの肉食は、Fig. 1 に示すように、牛肉サーロイン部分を等分、豚肉ロース部分を4等分し、18°Cの冷蔵庫内で約2週間保存後、5°Cの冷蔵庫内で約16時間解凍を行った。肉を浸漬する重曹すなわち炭酸水素ナトリウム（関東化学社製）溶液濃度は、0（蒸留水）、0.1、0.2 および 0.4 mol/1 の4段階とした。なお、浸漬時間は40分に統一した。

浸漬液より取り出した肉は、ナイロン/特殊PE製（厚さ112μm、220×180mm）の真空調理専用袋に封入後、AUTO VACUUM PACKER（TOSEI DENKI: TOSPACK V-221）を用い、真空度600mmHgで真空包装した。10°C恒温水槽中に真空包装した肉を浸漬し、肉の中心温度が80°Cに達するまで加熱後、氷水で中心温度が20°Cになるまで冷却した。冷却した肉を20×20×10mmに成形してテクスチャー測定用試料とし、官能評価用試料は20×20×10mmに成形し用いた。

2.2 テクスチャー特性の硬さの測定

テクスチャー特性の硬さの測定は、レオロメーター・マックス（RX-1700: アイテクノ製）を用い、圧縮速度を600, 300, 100, 10mm/minの4段階に変化させ測定を行った。試料の厚さは10mm、クリアランスは2mm（圧縮量8mm）に設定した。プランジャーは前歯を想定したかさばり型（圧縮面積0.24cm²）および奥歯を想定した歯形プランジャー（圧縮面積0.18cm²）を用いた（Fig. 2）。テクスチャー特性の硬さは、大越の方法に従い、プランジャーの圧縮面積を考慮して応力単位で算出し、硬さが圧縮速度により変化するため、見かけの硬さとした。測定温度は20±2°Cである。

2.3 官能評価

(A) Beef (Sirloin)

Shoulder ← 1 2 3 4 5 6 7 8 → Round

(B) Pork (Loin)

Shoulder ← 1 2 3 4 → Round

Fig. 1 Pieces of beef and pork which were used as samples.
シェッフェの一対比較法（原法）による官能評価を行った。パネリストは、訓練された本学学生の72名（n=6）とし、試料の提示温度は20℃とした。評価項目は試料の咀嚼時のかたさ（-3：非常にやわらかい→+3：非常にかたい）、試料食塊の飲み込み易さ（-3：非常に飲み込みにくい→+3：非常に飲み込み易い）、口中の残留物の多さ（-3：非常に少ないと→+3：非常に多い）および総合評価としてのおいしさ（-3：非常においしくない→+3：非常においしい）である。なお、口中の残留物についても質問した。

3. 結果および考察

3.1 見かけの硬さと浸漬する重曹濃度との関係

圧縮速度600mm/minにおける試料の見かけの硬さの関係と浸漬する重曹濃度との関係を試料間の有意差をもとにFig. 3に示した。いずれの試料も重曹濃度が高くなるに従い、軟らかくなることが認められた。

歯型プランジャーの場合、牛肉および豚肉の見かけの硬さはともに、濃度0.1mol/l以上の重曹溶液に浸漬した試料は重曹無添加（濃度0mol/l以下無添加）試料に比べ有意に軟らかかった（p<0.01）。

一方、くさび型プランジャーの場合、牛肉および豚肉の見かけの硬さはともに、濃度0.2mol/l以上の重曹溶液に浸漬した試料が無添加試料に比べ、有意に軟らかかったです（p<0.01）。しかし、いずれの浸漬濃度の試料（牛肉および豚肉）も歯型

Fig. 2 Figures of two kinds of plungers which were used in this study.

Fig. 3 Relationship between apparent hardness of samples at compression speed 600mm/min and concentration of sodium hydrogencarbonate soak
- ○: apparent hardness obtained by dentiform plunger;
- □: apparent hardness obtained by wedge-shaped plunger.
**Significant at p<0.01. *Significant at p<0.05.
の圧縮面積の差は小さいのにもかかわらず、得られた応力には大きな差が認められている。これら2種のプランジャーはプランジャーの形状（Fig. 2）からも推測できるが、側面部の面積も圧縮の際に関わっていると言えよう。今後はプランジャーの側面積の影響も考慮した測定方法の開発が必要である。

3.2 試料の見かけの硬さと圧縮速度の関係

牛肉および豚肉の見かけの硬さと圧縮速度の関係をFig. 4に示した。

くさび型プランジャーの場合、顕著に速度依存性がみられたものは重曹濃度 0.2mol/l であり、牛肉の見かけの硬さは10mm/min よりも100mm/min 以上の速い圧縮速度の方が有意に軟らかいことが認められた（p<0.01）。一方豚肉においても、重曹濃度 0.2mol/l の試料で10mm/min よりも300mm/min 以上の速い圧縮速度の見かけの硬さの方が有意に軟らかいことが認められた（p<0.01）。また、重曹濃度 0.4mol/l の試料では圧縮速度が速くなるに従い、見かけの硬さは有意に軟らかくなることが認められた（p<0.05）。

Fig. 4 キュレーションスピード依存性の影響力の関係

□：試料は蒸留水で浸漬
□：試料は0.1mol/lの重曹で浸漬
□：試料は0.2mol/lの重曹で浸漬
□：試料は0.4mol/lの重曹で浸漬

**Significant at p<0.01. **Significant at p<0.05.
p<0.01)。
一方、歯型ブラウンジャーの場合、顎著に速度依存性がみられたものはくさび形同様、重曹濃度0.2mol/lであり、牛肉の見かけの硬さは圧縮速度10mm/minよりも600mm/minの方が有意に軟らかいことが認められた（p<0.01）。また、重曹濃度0.4mol/lの試料では、圧縮速度100mm/minよりも600mm/minの見かけの硬さの方が有意に軟らかいことが認められた（p<0.01）。一方、豚肉では有意差は認められていないが圧縮速度が速くなるに従い見かけの硬さが軟らかくなる傾向にあった。

以上の結果より、見かけの硬さに有意差が生じた試料間では、いずれも圧縮速度が速くなるに従い、試料の見かけの硬さが軟らかくなることが認められた。圧縮速度を変化させて肉の見かけの硬さを測定した報告11)によると、圧縮速度が速い（600mm/min）測定の方が見かけの硬さが軟らかいとしている。この結果は本研究と同様の傾向である。逆に、神山ら12)は豆腐の硬さに及ぼす圧縮速度の影響について検討を行い、圧縮速度が速いほど見かけの硬さが大きくなるとしている。山本9)によると、中高年齢群と義歯装着者群は低年齢群に比べ、下顎運動における咀嚼周期が長くなることを指摘しており、これらのことから中高年齢群と義歯装着者群は低年齢群に比べ、咀嚼速度が遅いことが推測される。山本の研究結果と併せて考察すると、高齢者が豆腐のような構造のものをおし好み、肉のような線維状の組織をもつ食物を敬遠する傾向は咀嚼速度の点からも妥当といえる。

3.3 官能評価

浸漬する重曹溶液の濃度が異なる試料の各評価項目について、分散分析を行った結果、咀嚼時のかたさおよび飲み込み易さには牛肉および豚肉ともに1%制度で主効果に有意差が認められた。また、口中の残留物の量は、牛肉（p<0.05）および豚肉（p<0.01）のいずれについても主効果に有意差が認められた。しかし、おいしさの評価項目には主効果に有意な差が認められなかった。

Fig. 5 Distance scale for the sensory evaluation of samples which were obtained from Scheffé’s paired comparison
In sensory test, sample A is soaked in distilled water without sodium hydrogen carbonate, sample B is soaked in 0.1mol/l sodium hydrogen carbonate, sample C is soaked in 0.2mol/l sodium hydrogen carbonate and sample D is soaked in 0.4mol/l sodium hydrogen carbonate. **Significant at p<0.01. *Significant at p<0.05.
そこで、Fig. 5 に、各評価項目における試料の評点の平均推定値と試料間の差の検定結果を示した。

咀嚼時の硬さは牛肉および豚肉ともに、重曹濃度が高くなるに従いやわらかくと評価された。試料を咀嚼し形成された食塊の飲み込み易さは、牛肉および豚肉ともに重曹濃度が高くなるに従い飲み込み易くなると評価された。ことに、牛肉では無添加試料が重曹浸漬試料に比べ、有意に飲み込みにくくと評価され、豚肉では重曹濃度 0.4mol/l の試料が他の試料に比べ、有意に飲み込み易いと評価された。

図の残留物の量は牛肉および豚肉ともに、重曹濃度 0.4mol/l の試料が最も図の残留物を少なく感じると評価された。また、残留物の内容について質問したところ、72名中59名が肉の線維が残っていると回答し、牛肉では38名、豚肉では33名が歯と歯の間と回答した。今回行った官能評価は若年者のみをパネリストとしているが、歯の欠損がより多い高齢者では、残留物があるとする回答が増加すると思われる。

総合評価では、牛肉、豚肉ともに最も硬い無添加試料のおいしさの評価が低かった（おいしくない）傾向にあったが、試料間に有意差は認められなかった。

以上の結果より、肉を浸漬する重曹溶液の濃度が高くなるに従い、咀嚼時に軟らかく感じられ、また咀嚼により飲み込み易い食塊を形成することが示唆された。ことに、最も高い 0.4mol/l 濃度の重曹溶液に浸漬した試料肉が、咀嚼時に軟らかく感じられ、飲み込み易い肉食塊を形成し、図中の残留物が少ないと評価され、最も食べ易いことが認められた。しかし、おいしさに有意差が認められなかったことは、重曹溶液に浸漬することにより肉本来の味が損なわなかったためと推測できる。

本研究は基礎的研究のため高齢者を対象としていないが、おいしさを含めた食肉の食べ易さについて高齢者を対象とした官能評価を今後行いたいと考えている。

4. 要約

咀嚼機能が低下した高齢者に適した食肉加工の基礎的研究として、牛肉および豚肉のおいしさとテクスチャーを中心に検討を行った。食肉を重曹溶液に浸漬することで軟化を行い、テクスチャー特性の硬さの比較、および官能評価によるかたさおよび嗜好性について検討した。

(1) 浸漬する重曹濃度を 0, 0.1, 0.2および0.4mol/l の4段階に変化させた場合、いずれの浸漬濃度の試料（牛肉および豚肉）も歯型の方がくさび型ブランジャーよりも見かけの硬さが硬い傾向を示した。

(2) 見かけの硬さに有意差が生じた試料間では、いずれも圧縮速度が速くなるに従い、見かけの硬さが軟らかくなることが認められた。

(3) 肉を浸漬する重曹溶液濃度が高くなるに従い、咀嚼時に軟らかく感じられ、飲み込み易い食塊を形成することが示唆された。

文 献
1) 崎元千恵子，磯博，新開省二，鈴木隆雄，杉山みち子，高本和彦，西村秋生，芳賀博，吉田勝美，ヘルスケアメントマニュアル生活習慣病・要介護状態予防のために，pp.164-179，厚生科学研究所，東京，2000。
4) 奥田和子，上田隆蔵，醗酵食品の肉の物性に対する調理効果，日調理誌，23，326-335，1990。
5) 高本和彦，柳沢幸江，村田安代，寺元芳子，加熱方法の違いによる鶏肉の物性，成分，食味に及ぼす影響，家政誌，44，307-314，1993。
6) D. R. Fogle, R. F. Plimpton, H. W. Ockerman, L. and T. Persson, Tenderization of beef: Effect of...

7) 品川弘子，川梁鉄江，大越ひろ，調理とサイエンス，pp.96-103，学文社，東京，1993.

8) 梶田武俊，小田 求，加田静子，高木節子，橋本環子，調理のための食品学辞典，p.197，朝倉書店，東京，1994.

9) 山本 誠，全部床義歯装着者の咀嚼能率，咀嚼筋活動および下顎運動による咀嚼機能評価，阪大歯学雑誌，38，303-331，1993.

Taste-active Components in Bone Marrow Extracts

Shinya Fuke, *Jun-ichi Wakamatsu and **Masao Fujimaki

(Faculty of Education, Tokyo Gakugei University, *Central Research Institute, Itoham Foods Inc. and **Research Institute of Meat Functions)

Chicken, pork and beef bones were extracted and evaluated by sensory test. The chicken extract was showed umami and koku. The pork extracts elicited koku, however, it was judged not savory because of its bad flavor. The beef extracts were not tasty. The total amount of amino acids was the highest in chicken extract and reached about 120 mg in 100 g bone. The amount was 50 and 10 mg in pork and beef extract, respectively. The ratio among each amino acid seemed to be closely related to one another. In chicken, IMP and ADP were dominant. Fairy amount of ADP and AMP were detected in pork, though in beef nucleotides were scanty. Many kinds of nucleosides and bases, such as inosine, guanosine, xanthosine, adenosine, cytidine, hypoxanthine, cytosine and uracil were found in chicken extract. In pork and beef extracts, bases were dominant rather than nucleosides. These components were reported taste-active in salmon roe, so they seemed to contribute to give good taste on these extracts, especially in chicken extract. Creatine was the largest component in every extracts and some were converted to creatinine during heating. Inorganic ions were also analyzed. Peptides were separated from black pork extract by HPLC using ODS column. Some of the separated peaks were taste-active in 0.5% salt solution.

1. 目的

骨より得られるスープはスープを作る素材として種々利用されている。たとえば鶏骨はフカヒレスープ、ラーメンスープなどに、豚骨はラーメンスープなどに、また牛骨はフォンドボーやラーメンのスープに使われ特有の味と風味を与えている。本研究では、これら3種類の味の違いがどこにあるのかを探るために遊離アミノ酸、スクレオチドをはじめクレアチニン、クレアチニン、無機イオン類などについて分析し、骨相互間の違いを明らかにするために検討を行った。また、ペプチドやタンパク質組成にも相違があると考えられたのでSephadex G-25ゲルろ過を行った。

2. 方法

（1）試料：骨より肉および脂肪をできるだけ取り除き、適当な大きさに切断した。鶏骨700g、豚骨2,000g、牛骨2,500gを用いた。これらに水を加え時々あくをとりながら約5時間加熱してスープを調製した。加熱後脱脂でろ過し、鶏骨は1,400ml、豚骨は2,000ml、牛骨は2,500mlに定
容した。この中の一部を、真空凍結乾燥し、冷凍貯蔵した。

黒豚の骨は伊藤ハム㈱より鹿児島県産のものを入手した。

（2） 官能検査：得られたエキスおよび真空凍結乾燥した試料について、研究室員により官能検査を行った。

（3） 一般成分：凍結乾燥試料中の水分、タンパク質および脂質の分析をした。水分は常法により105℃乾燥法により、タンパク質はローリー法により測定した。脂質量はクロロホルム/メタノール（2：1）により抽出して得られた固形分の重量を測定した。

（4） 遊離アミノ酸：自動分析によった。

（5） ヌクレオチドおよび分解物：HPLCによりそれぞれ定量した。

（6） クレアチンおよびクレアチニン：比色法により行った。

（7） Sephadex G-25ゲルろ過：Sephadex G-25 fine を5×50cm のカラムに充填し、5％エタノールにより溶出し、ニンヒドリン法により遊離アミノ酸の溶出の様子を観察した。

（8） 黒豚の骨エキスの調製法：豚骨エキスは熱湯あるいは水からかき出して抽出するのが一般的な方法である。いままでの研究により、123℃、1.2気圧のオートクリーブ中で30分間処理した後に、水からかき出して約2時間抽出すると味の良いエキスが得られることが明らかとなっているので、この方法によりエキスを調製した。エキスをアンモノマンプレンフィルター YM-1 により分子量1,000以下の成分を得た。この成分を、センシューマーODS-1250 (25×200mm) により分画した。これらの中の主な成分を0.5％の塩水に溶解し、呈味を調べた。また、脱気封管し、110℃、16時間加水分解を行い、水解前後のアミノ酸組成をTLC (BuOH/AcOH/H2O, 4：1：2) により調べた。

3. 結 果

3.1 エキス成分の重量の比較
凍結乾燥を行ったエキスの重量は、それぞれの骨100g当たり、鶏骨3g、豚骨3.65g、牛骨1.82gであった。

3.2 官能検査の結果
エキスでも凍結乾燥した試料を直接なめた場合でも味にほとんど差が認められなかった。鶏骨は甘味およびうま味、こくがありおいしいと評価された。豚骨はこくが強いものの豚骨特有の臭みが強く、そのままではおいしいとはいえないと評価された。牛骨の場合には牛のフレーバー、油っぽさが強く、牛脂の味が舌に残ると評価された。

3.3 一般成分
凍結乾燥粉末中に含まれる水分、脂質およびタンパク質の量は、鶏骨、豚骨、牛骨の順に7.4、4.1、6.3％（水分）、18.6、8.5、10.6％（脂質）、4.2、4.2、1.9％（タンパク質）であった。タンパク質の量が少ないのはエキス中に含まれる多量のゼラチンがローリー法では測定できないためと考えられる。従ってケルダール法などにより定量する必要がある。

3.4 遊離アミノ酸
遊離アミノ酸の総量は、骨100g当たり鶏骨119.7mg、豚骨48.9mg、牛骨10mgで、鶏骨は他の骨よりもはあるかに多くの遊離アミノ酸が検出された。個々のアミノ酸の中、主なアミノ酸をFig.1に示した。いずれの骨でもタウリン(Tau), GluおよびAlsが多く、よく似た傾向にあると考えられる。牛骨ではカルノシンが他のアミノ酸に比べて多く検出されたがその量は骨100g当たり2mg程度で、鶏骨5.8mg、豚骨3.8mgよりも少なかった。結合アミノ酸の総量は鶏骨147.5mg、豚骨185mg、牛骨24.4mgであった。いずれ
の骨でも Glu (28.2, 26.2, 3.3mg), Gly (14.7, 40, 2.1mg) および Ala (11.8, 20.1, 10.1mg) が他のアミノ酸に比べて多く検出された。鶏骨および豚骨中にはかなりの量のゼラチンが存在すると考えられる。

3.5 ヌクレオチドおよび分解物

ヌクレオチドとして鶏骨および豚骨では ADP, AMP, IMP および GMP が検出された。鶏骨で
Fig 3 Nucleosides and bases in bone marrow extracts

Fig 4 Creatine and creatinine in bone marrow extracts
豚骨，牛骨の順に2,240, 1,823および1,979mgで，
クレアチニンは同じく1,328, 596および786mg
であった。クレアチニンは骨エキス中では最大の成
分であった（Fig. 4）。クレアチニンは加熱により
クレアチニンに変化することが知られているが，
それらの呈味効果については解明されていない。
カツオ節中に多量のクレアチニン，クレアチニン
が含まれているが，それらはカツオ節の味の発現
にはほとんど関与していないようである。また，
クレアチニンはアラニンと反応し牛肉スープ特有の
味の発現に関与しているとの報告もあるので，
骨を加熱している間に，牛肉スープと同じ成分が
生成された可能性も考えられる。

3.7 無機イオン
ナトリウムイオンは鶏骨，豚骨，牛骨の順に
2,550, 1,750および5,500mgであった。カリウ
ムイオンは5,950, 1,775および4,600mg含まれ
ていた。食品中には一般にナトリウムイオンに比
べてカリウムイオンが著量含まれているが豚骨お
よび牛骨では両者は同量またはそれ以上含まれて
いた。

3.8 Sephadex G-25 ゲルろ過によるパターン
の比較
3種類の骨エキスの溶出パターンをFig. 5に
示した。最も早く溶出する成分はそれぞれの骨で
差はあるものの同じ位置にあつた。豚骨エキスで
は最初のピーク出現後すぐに比較的大きなピーク
が出現したが，それ以後はピークが認められなかっ
た。牛骨エキスについてはさらに2つのピーク
が認められた。鶏骨エキスでは，豚骨や牛骨より
も更に遅い位置に大きなピークが存在していた。
この大きなピークには遊離アミノ酸と低分子ペプ
チドが混在していると考えられる。

3.9 黒豚骨エキスのペプチド成分と呈味効果
分子量1,000以下の成分をセプシューODSに
付したところ，大小のピークあわせて約30成分に
分離した。これらの中からピークの大きな10の成
分を選び官能検査を行ったところ，酸味，肉らし
い味を示すもの，渋みを示す成分などがあること
が判明した。加水分解前後の成分を薄層クロマト
グラフィーに付したところ，ペプチドと遊離アミ
ノ酸が混在していることが判明した。

4. 要 約
鶏骨，豚骨および牛骨よりエキスを抽出し，エ
キスの味の比較を行ったところ，鶏骨はうま味，
こくがありおいしいと評価された。豚骨はこくは
あるものの特有の臭みがあり，そのままではおい
食肉に関する助成研究調査成果報告書

しいとはいえないと評価された。また、牛骨の場合には油っぽいことと、独特の臭みのゆえに評価が低かった。呈味成分である遊離アミノ酸、スクレオチドおよびその分解物、クレアチンとクレアチニン、無機イオンの分析を行った。遊離アミノ酸の組成そのものは、頭髪で大きなパターンの差は認められなかったが、総量は鶏骨約120mg、豚骨約50mg、牛骨約10mgと大きな差が認められた。スクレオチドとしては ADP、AMP、IMPおよびGMPなどが検出されたが、鶏骨にのみIMPが認められた。豚骨ではADP、AMPが主な成分であった。骨が新鮮なためIMPへの分解が少ない、あるいはAMPデアミナーゼ活性が低いのではないかと推察される。クレアチンは分析した成分の中では最大の成分であった。加熱によりクレアチニンに分解されるため、クレアチニンも著量検出された。いずれのエキスにおいても、ナトリウムおよびカリウムイオンが多く含まれていたが、それらのバランスは異なっていた。また、黒豚よりオートクレーブ処理後エキスを調製し、分子量1,000以下の成分のペプチドの分析を行ったところ、呈味に関連する成分が存在すると推定された。
Effect of Milk Peptides on the Acceleration of Color Formation in Meat Products

Ryoichi Sakata and Hidetoshi Morita

(School of Veterinary Medicine, Azabu University)

Promoting effect of milk protein hydrolysate (MPH) on the color formation of meat products was investigated. A skim milk concentrated with an ultrafiltration membrane was used as a substrate. It was hydrolysed at 50°C for 5 hours using 2 types of commercial proteases and then freeze-dried. The main part of the powdered preparation was estimated to be peptides with molecular weight below 1,500 using HPLC with gel-filtration column. The a* value (redness) was higher in the pork sausage prepared with addition of 17ppm NaNO₂ and 10% MPH, compared with that of 85ppm NaNO₂. The 75% acetone extract of the sausage sample showed an increase on the red colored heme pigment by its absorption spectral pattern, which also recognized the promoting effect of the MPH on the color formation. The color forming ratio (CFR) of this sausage was ca. 1.6 times higher than that of the addition of unhydrolysed milk protein, and higher CFR was found in the sausage added with 50% ethanol extracted-fraction from the MPH. Thus the possibility of the peptides in MPH was suggested to use as a supplemental agent for red color development in manufacturing of meat products.

1. 目的

近年、乳幼児を中心に増加しつつある牛乳アレルギー患者にとって、牛乳や乳タンパク質の摂取が困難になっている。伊藤ら1)は、牛乳アレルギー発症を抑制する乳食品素材の開発を目的として、酵素処理により乳タンパク質を分解しそのアレルゲン活性の低減化を行っている。この得られた乳タンパク質酵素分解物を牛乳アレルギー患者対応食肉製品に使用する添加試験の過程において、低濃度の亜硝酸塩共存下でのこの酵素分解物が加熱食肉製品の発色を明らかに増強する現象を見い出し、食肉製品の発色剤として、一般に亜硝酸塩 (NaNO₂) が広く用いられているが、発癌物質であるニトロアミンを生成する恐れがあることなどの理由から、食肉加工業界では発色剤の過剰な使用を控える傾向にある2)。現在、発色剤を使用しない食肉製品が製造されているものの、長期間の熟成によって赤色を発現するパルマハム3)のような発酵型製品を除き、発色剤無添加製品の色調は悪く、食欲をそそるものではない。また、抗菌効果があり、ポツリヌス菌の生育抑制に特異的に働く亜硝酸塩をまったく用いないと、逆に食中毒

© The Ito Foundation

© The Ito Foundation
発生の危険性にさらされることになる。乳タンパク質を分解した低アレルゲン化乳に発色促進効果が認められることから、牛乳アレルギーの人でも摂取でき、かつ NaNO₃ などの発色剤は用いるがその添加量を低減化した健康で安全な食肉製品を開発する可能性が期待される。

本研究では、これまでの研究の経緯からベプチドに着目し、乳タンパク質分解産物を構成するベプチドが有する食肉製品への発色促進効果を確認し、その有効成分を明らかにすることを目的とした。材料としてカゼインを主要構成タンパク質成分とする濃縮脱脂乳を用い、その酵素分解物を有する食肉製品への発色促進効果について検討を行った。

2. 方法

2.1 酵素分解標品の調製

Fig. 1 に、本研究に用いた乳タンパク質酵素分解物（以下、酵素分解物と略記）の調製方法を示した。膜外ろ過膜（Koch Membrane Systems Inc., 分画分子量50,000）で4倍濃縮した脱脂乳の固形分を10％になるように蒸留水で希釈し、これにプロテアーゼであるアルカラーゼおよびフレーバーゼイム（Novo Nordisk Industry 社製）をそれぞれ0.05および0.105％添加し、50°Cで5時間反応させた。反応後90°Cで20分間加熱して酵素を失活させ、凍結乾燥により粉体化した。また、この酵素処理液にエタノールを50％濃度（予備実験の結果から酵素処理液からの不溶物が最も少ない濃度）になるよう加え、5,500×gで20分間遠心分離し、その上清部分からエバポレーターでエタノールを留去した後、凍結乾燥により粉体化した（以下、エタノール抽出画分と略記）。これからの酵素分解標品（酵素分解物とエタノール抽出画分）をソーセージ試作用に供試した。酵素未分解物として、濃縮脱脂乳をそのまま凍結乾燥して

粉体化したものと用いた。また、エタノール抽出画分について、高速液体クロマトグラフィー（HPLC）により乳タンパク質試料の分解状態を調べた。HPLC 法は、検体：Shimadzu LC-6A, カラム：TSG-GEL G2000SWXL を用い、移動相：45％アセトニトリル+0.1％トリフルオロ酢酸、検出波長：210nm の条件下行った。

2.2 ソーセージの試作

豚もも部の挽肉（と畜後48時間以内）を用い、ソーセージ試料を調製した。方法として、食肉試料に対し、NaCl 2％、NaNO₃ 17ppm および酵素分解物、エタノール抽出画分、あるいは未分解の濃縮脱脂乳を10％になるように加え、これを水15%とともにフードプロセッサーに入れて、1分間磨碎し混和した。混合物を脱気した後、クレハロンフィルムに充填し75°Cで20分間加熱した。また、対照試料として、酵素分解物を加えず NaNO₃ を17ppm または 85ppm 添加したソーセージも調製した。これらの試作ソーセージは各1点調製し、その発色の程度を、分光測色計（Minolta CM-508d）による a*値（赤色度）で評
値した。また、発色色素であるニトロシルヘム色素（ニトロシルヘモグロムが主成分）生成の程度は75％アセトン抽出液の吸収スペクトルを測定して調べ、75％アセトン－0.7％HCl抽出液で求めた全ヘム色素量から発色率を算出し、この酵素分解物による発色促進効果を示した。

これらの測定は各処理区のソーセージ1点を用いて行い、異なる3カ所からの平均値でデータを示した。

3. 結果と考察

3.1 試作ソーセージにおける酵素分解物の発色促進効果

Fig. 2 に、a* 値の測定結果を示した。17ppmのNaNO₂を添加したソーセージでは、a* 値は約6.0であったが、これに酵素分解物を10％加えた試料では約8.0を示し、発色が促進されていることが明らかに認められた。さらにこの値は、NaNO₂を5倍に増加させた85ppm 添加のものより高い値を示した。また、未分解の濃縮脱脂乳を添加した試料では、この発色促進効果は認められず、脱脂乳自体の白色が加わったことから、a* 値が減少したと思われる。

酵素分解物を添加したソーセージ試料から得た75％アセトン抽出溶波の吸収スペクトルパターンを Fig. 3 に示した。この図より、ヘム色素特有のソーレー帯（近紫外外部）に吸収が認められ、395nm に吸収極大を有することから、この試料中にニトロシルヘモグロムの生成が確認された。

また、全ヘム色素の抽出液において、17ppm のNaNO₂のみを添加した試料と吸収スペクトルを比較したところ、そのパターンが一致したことから（データ省略）、原料豚肉のヘム色素量に差は認められず、酵素分解物添加ソーセージではニトロシルヘモグロムをより多く生成していることが示された。17ppm のNaNO₂存在下において、酵素未分解物を添加した試料では27.5％の発色率であったが、17ppm NaNO₂のみを添加した場合も同程度の発色率を示した (Fig. 3 の最大吸収波長 395nm における吸光度の比から算出)。酵素分解物添加ソーセージでは45.0％を示し、未分解添加区および無添加区の場合と比べ約1.6倍に発色率が増加した（データ省略）。

3.2 HPLC 法による乳タンパク質酵素分解物の分析

Fig. 4 にエタノール抽出画分のHPLC による分析結果を示した。クロマトグラフィーは、ガスクロロカラムを用いて分離を行った。HPLC 分析
Fig. 3 Absorption spectra of 75% acetone extract from sausage.

で高分子量領域にピークが見られず、このクラマトグラムの溶出時間からエタノール抽出物のほとんどは、分子量1,500以下のペプチドであることが確認された。未分解の乳タンパク質の存在は、この図からは認められなかった。

3.3 エタノール抽出した酵素分解物の発色促進効果

乳タンパク質を酵素処理することにより得られるペプチドが、発色促進に関与することが、上記の結果から推定された。そこで、ペプチドをエタノール抽出法で酵素分解物から分離したエタノール抽出画分を用いて実験を行った。抽出により回収される物質の量（乾物重量）は抽出前の約70％になった。したがって、50％エタノールには酵素分解物の約70％が移行し、これらは主にペプチドからなる画分（分子量1,500以下）として取り扱われる。そのソーセージ試料の発色率をFig. 5に示すが、発色率は64.3％になり、酵素分解物添加試料より、さらに高い値（64.3/45.0≒1.4倍）に達した。これに添加あるいは酵素未分解物を添加したものと比べると約2.3倍の発色率になる。

これまでの我々の研究で、食肉製品の発色を促進する物質に関する内因性筋肉成分として、筋膜中の低分子量画分がヘム色素のニトロシル化に効果的に働くことを捉えている。さらにその画分中の活性成分を分離し、分子量200〜550のペプチドが強い発色促進効果を現すことを認知している。

また、筋肉中に含まれるペプチドの一つであるカルノシンを用いた実験で、その添加量が多いほど加熱塩漬肉試料の発色率は向上し、亜硝酸塩量を低下させても十分な赤色が得られることが認められた。
Fig. 5 Color forming ratio (CFR) of sausage to which milk protein hydrolysates had been added.

たり。本研究ではペプチドに着目し、食肉製品への発色促進効果および NaNO₂の使用量低減化効果を確認し、その有効成分を明らかにすることを目的とした。本実験結果から、乳タンパク質を酵素で解砕し、それを添加することにより発色促進効果が認められ、乳ペプチドがその機能を有することが示唆された。この効果には、分子量 1,500以下のペプチドが関与していると考えられる。また、50%エタノール抽出物の添加を行ったが、これは同量使用した酵素分解物と比べ約 1.4倍量（=1/0.7）のペプチドをソーセージに添加したことになり、これに比例して発色率が増加している結果から、乳ペプチドが食肉製品の発色促進に対し明らかに寄与していると考察される。

乳タンパク質の酵素分解物を食肉加工に発色促進剤として利用する可能性が本実験で示唆されたが、今後は、酵素分解物の発色促進効果の最適反応条件を見い出すよう実験を進める予定である。さらに、有効な乳ペプチドの検索ならびに作用機構の解明を行うとともに、乳清タンパク質からの分解物についても同様に研究を実施したいと考えている。

4. 要 約

乳タンパク質の酵素分解物有する食肉製品への発色促進効果について検討を行った。この分解物は、混入する過酸化水素から脱脂乳から分離濃縮したものを基質とし、市販の食品用酵素剤 2 種を用い 50℃、5 時間の条件で消化して粉末化することにより調製した。ゲルろ過/HPLC 法で分析した結果、酵素処理により乳タンパク質の大部分は分子量 1,500以下のペプチドになっていった。発色促進効果を赤色の程度を示す a*値で評価したところ、酵素分解物を 10%添加し試作したソーセージは 17ppm NaNO₂濃度でも発色は良好で、NaNO₂のみを 85ppm 加え調製した試料よりも明らかに高い a*値を示した。発色色素の生成程度を 75%アセトン抽出液の吸収スペクトルで測定した結果、酵素分解物を添加したソーセージにおいて、発色色素の生成量が増加が確認された。このソーセージの発色率は、乳タンパク質の酵素未分解物を添加した対照試料の約 1.6倍を示した。また、酵素分解物の50%エタノール抽出液を添加したソーセージで、さらに発色率が向上した。これらの結果から、乳ペプチドの発色促進効果が明らかとなり、これらの乳タンパク質酵素分解物を食肉加工に発色促進剤として利用する可能性が示唆された。

文 献
1) 伊藤典之：食品工業、41, No.24, 32-38. 1998.
2) 永田典治：食品の変色の化学，木村 進ら編著，光琳，東京，p.385-407，1995。
3) 坂田亮一・森田英利・乗松 毅・牛 軍：日豚会誌，36，123-128，1999。
4) 坂田亮一・森田英利・永田典治：日豚会誌，36，47-51，1999。
5) 坂田亮一：食肉の科学，40，221-224，1999。
天然ケーシングの機械特性に及ぼす結合組織の影響

Effect of Connective Tissue on Mechanical Properties of Natural Hog and Sheep Casings

西海 理之・佐藤 悠子・鈴木 敦士・*坂田 亮一
（新潟大学農学部，*麻布大学獣医学部）

Tadayuki Nishiumi, Yuko Sato, Atsushi Suzuki and *Ryoichi Sakata
（Faculty of Agriculture, Niigata University and *School of Veterinary Medicine, Azabu University）

Mechanical, biochemical and histological evaluations of natural hog and sheep casings were studied to elucidate the effect of connective tissue on the mechanical properties of natural casings. Chinese casings were significant tougher than any other casings (P<0.01). Natural hog and sheep casings were predominantly composed of collagen organized in many layers of sheets of collagen fibers and minor elastin limited in blood vessels. The amounts of collagen, elastin, and proteoglycan, and histological distribution and density of elastin fibers for various casings were essentially the same. These parameters thus would not likely contribute to the strength of natural casings. Chinese casings possessed a significant low heat-solubility of collagen (P<0.01), and a different size and arrangement of collagen fibers. Thus the thermal and structural stabilities of collagen may determine the mechanical properties of casings.

1. 目的

ソーセージ製造に用いられる可食性ケーシングには再構成コラーゲンを用いた人工ケーシングと主に豚や馬の腸などを利用した天然ケーシングがあり、天然ケーシングは適度の弾力性や特有の歯ごたえがあるために消費者に好まれ、広く用いられている。しかしながら天然ケーシングは品質のばらつきが大きく、あたかもソーセージを詰める際に破れてしまったり、硬すぎて咀嚼後もケーシング部分が口の中に残るという問題があり、天然ケーシングの機械特性のばらつきをなくすことが大きな課題となっている。特に、生産量が多い中国産豚腸ケーシングは価段が安いが硬いと

いう難点があり、中国産ケーシングの品質向上が大きな問題となっている。

天然ケーシングは、豚や羊の腸から粘膜層と筋層を除去した残りの粘膜下組織であり、結合組織（コラーゲン、エラスチン、プロテオグリカンなど）から構成される組織である。コラーゲンは堅固なコラーゲン線維ネットワークを構築し、ケーシング中を無尽に走る血管は主としてエラスチンから成る。またプロテオグリカンもコラーゲン線維と相互作用することでコラーゲン線維の強度や安定性に関与すると考えられている。従って、これら結合組織が天然ケーシングの硬さに影響すると予想されるが、天然ケーシング結合組織とその機械特性との関係についての研究のみならず、天
然ケーシングを構築している結合組織の諸性質に関する報告もない。

本研究では、いくつかの産地から採集した天然豚腸ならびに羊腸ケーシングの硬さを測定したうえで、これらの天然ケーシング中の結合組織成分を組織学的および生化学的に評価し、天然ケーシングの機械特性に及ぼす結合組織の影響について検討した。

2. 材料および方法

2.1 供試材料

中国産、日本産およびアメリカ産豚腸ケーシング（口径32/34 mm）を用い、また羊腸ケーシング（口径20/22 mm）は中国産、オーストラリア産およびエジプト産を用いた。これらの天然ケーシングを流水で数時間塩抜きしたのち、以下の実験に供した。

2.2 ケーシングの硬さの測定

塩抜きたケーシングを切り開き、レオメーター（NM-2002J、レオテック）を用いてそれぞれのケーシングの硬さを測定した。硬さは、直径3 mmの円柱状プランジャーをケーシングに対して垂直に荷重をかけ、プランジャーがケーシングを突き破る時に示す最大荷重値（破断応力、g）で示した。

2.3 生化学的分析

塩抜きたケーシングを液体窒素で凍結粉砕し、クロロフォルム・エタノール（2：1）混合液で脱脂乾燥した試料（DDM）のコラーゲン、エラスチンおよびプロテオグリカン含量ならびにコラーゲンの加熱溶解性を測定した。なお、これらの生化学的分析は既報の方法に従った。実験結果の統計的分析には、Student's t-test と Duncan's Multiple Range Test を用いた。

2.4 組織学的分析

組織化学用標本として10％フォルマリン-PBSで固定したケーシングをVerhoff's Van Gieson染色し（Elastin Stain Kit, Sigma）、光学顕微鏡下で各ケーシングにおけるエラスチン線維とコラーゲン線維を観察した。さらにケーシングコラーゲン線維構造の観察のために、2％パラフォルムアルデヒド-2.5％グルタルアルデヒド溶液（0.1 M リン酸緩衝液、pH 7.4）で固定した試料をOhtaniらの細胞消化・走査電顕法に従って10％NaOH 水溶液で5日間処理後、蒸留水で3日間洗浄した。これをタンニン-オスマウム法で処理したのちアルコール系列で脱水後、t-プチルアルコール置換および凍結乾燥した。乾燥試料を試料ホルダーに接着し、金・パラジウムを蒸着してHitachi S-2380N またはHitachi S-430走査型電子顕微鏡を用い加速電圧15kVで観察した。

3. 結果と考察

3.1 天然ケーシングの硬さ

Table 1 に示されるように、破断応力は豚腸および羊腸ケーシングのどちらにおいても中国産が有意に（P<0.01）高く、中国産ケーシングが硬いことが示された。Sakataらも同様に中国産豚腸ケーシングがアメリカ産よりも硬いことを認めている。また中国産ケーシングでは硬さの変動が大きく、他産ケーシングと同等の硬さを示すものも多かったが極めて硬いものも多く、結果として硬さのばらつきが大きかった。

3.2 ケーシング結合組織の生化学的特性

ケーシング結合組織の生化学的特性として、総コラーゲン含量、加熱溶解コラーゲン含量、コラーゲンの加熱溶解性、エラスチン含量およびウロニン酸含量をTable 1に示した。なお、塩抜きたケーシングの水分含量には大きな変動があったため、これらの結合組織含量をmg/g DDMで表示した。

豚腸、羊腸とも天然ケーシングのほとんどはコ
Table 1 Mechanical and biochemical characteristics of natural hog and sheep casings.

<table>
<thead>
<tr>
<th>Origin</th>
<th>Breaking Strength (g)</th>
<th>Total collagen content (mg/g DDM)</th>
<th>Heat-labile collagen content (mg/g DDM)</th>
<th>Heat-solubility of collagen (%)</th>
<th>Elastin content (mg/g DDM)</th>
<th>Uronic acid content (mg/g DDM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hog casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>807±203a</td>
<td>921±42a</td>
<td>14.4±5.0a</td>
<td>1.56±0.26a</td>
<td>22.0±1.6a</td>
<td>1.72±0.34a</td>
</tr>
<tr>
<td>USA</td>
<td>664±108b</td>
<td>830±101ab</td>
<td>19.1±6.3a</td>
<td>2.30±0.45b</td>
<td>N.D.</td>
<td>1.82±0.24a</td>
</tr>
<tr>
<td>Japan</td>
<td>623±117b</td>
<td>837±82ab</td>
<td>18.5±4.4a</td>
<td>2.12±0.36b</td>
<td>16.3±0.7b</td>
<td>1.99±0.27a</td>
</tr>
<tr>
<td>Sheep casing</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>China</td>
<td>499±144c</td>
<td>868±92ab</td>
<td>19.7±8.1a</td>
<td>2.27±0.61b</td>
<td>23.9±1.2a</td>
<td>1.86±0.15a</td>
</tr>
<tr>
<td>Egypt</td>
<td>330±103d</td>
<td>844±86ab</td>
<td>30.1±6.5b</td>
<td>3.57±0.58c</td>
<td>N.D.</td>
<td>1.72±0.17a</td>
</tr>
<tr>
<td>Australia</td>
<td>317±75d</td>
<td>803±64b</td>
<td>29.0±6.2b</td>
<td>3.61±0.37c</td>
<td>22.8±2.1a</td>
<td>1.79±0.37a</td>
</tr>
</tbody>
</table>

a-d: Means with different letters indicate significantly different (P<0.01).
N.D.: Not determined.

ラーゲンであり（80～92％）、硬さの異なるケーシング間での総ラーゲン含量の差異は認められなかった。また主として血管を構成するエラスチン含量は約20mg/g程度で、この値は筋肉内結合組織に占めるエラスチンの割合と同様に低く、ケーシング間での差異もほとんど認められないことからも、エラスチンはこれら天然ケーシングの硬さには影響しないと考えられた。しかしながら目を見て血管が多いようなケーシング（veiny casing）ではエラスチンがその硬さに影響するかかもしれない。また、プロテオグリカンの指標としてのウロニ酸含量は、各ケーシング間に差は認められなかった。ある種のプロテオグリカンはラーゲンと相互作用しラーゲンの構造安定性に寄与することが示唆されている。しかし本研究でのウロニ酸含量と天然ケーシングの硬さとの関連性は認められなかった。

一方、ラーゲンの加熱溶解性は、豚腸においても中国産ケーシングでの値が有意に（P<0.01）低く、ケーシングの硬さの差異とよく対応していた。ラーゲンの加熱溶解性は、77℃、70分間の加熱によってラーゲンの何％がゼラチンとして可溶化するかを表したものであり、ラーゲンの熱安定性を示す指標となる。ラーゲンの熱安定性にはラーゲン分子間架橋形成ならびにラーゲン線維のサイズや配向などが影響すると考えられている。本研究で得られた天然ケーシングラーゲンの加熱溶解性（1.5～3.6％）は他の組織、たとえば14～36カ月齢ブタの半脛筋では約13％に比べても極めて低く、また豚腸よりも豚腸での、さらによく硬い中国産ケーシングでのラーゲンの加熱溶解性が低くなっていた。従ってラーゲンの加熱溶解性は主としてラーゲンからなる組織の熱安定性の明らかな組織の強靭さを反映していると考えられ、言いかえれば、非常に薄い天然ケーシングの強靭さはラーゲン線維の構造やラーゲン分子間架橋形成によってもたらされていると考えられる。天然ケーシングの機械特性に及ぼすラーゲン線維構造やラーゲン分子間架橋形成については、今後さらに検討する必要がある。

3.3 天然ケーシングの組織学的特性

各ケーシングにおけるエラスチン線維とラーゲン線維の分布などを確かめるために、シグマ社のElastin Stain Kitを用いて染色後、光学顕微鏡で観察した。このKitは、エラスチンを黒色、ラーゲンを黄色に染色する。低倍率像では主としてエラスチンから構成される血管がラーゲン線維に埋もれて走行している様子が観察された（Fig. 1-a、矢印：細動脈、矢じり：細静脈）。
の血管を拡大すると、細動脈(A)と細静脈(V)のエラスチン線維の密度が異なっていた（Fig.1-b）。Fig.1-c に示されるように、ケーシングは幾層ものコラーゲン線維からなるシートによって構成され、それぞれのシートは波うたコラーゲン線維の織物様構造であり、さらにその中に細いエラスチン線維が走っていた（Fig.1-d，矢印）。これらの光学顕微鏡での観察結果は、すべてのケーシングで同様であり、豚腸と羊腸との間ならびに産地間における違いは認められなかった。

さらに、細胞消化-走査電顕法を用いて硬さの異なるケーシングにおけるコラーゲン線維構造を詳細に検討した。Fig.2 に日本産および中国産豚腸ケーシングコラーゲン線維構造を示した。ケーシングの外側のコラーゲン線維の構造は、日本産（Fig.2-a），中国産（Fig.2-b）ともに同様で、コラーゲン線維が平行に走る薄いシートの層から構築されていた。一方ケーシングの内側は、日本産では網目状に配向したコラーゲン線維によってスポンジ状を呈していたが（Fig.2-c），中国産豚腸ではほとんど観察されなかった（Fig.2-d）。

Fig.3 にオーストラリア産および中国産羊腸ケーシングコラーゲン線維構造を示した。オーストラリア産羊腸ケーシング外側（Fig.3-a）は細いコラーゲン線維による非常にきめの細かい織物のようにあったが，中国産羊腸（Fig.3-b）ではコラーゲン線維が比較的多く，オーストラリア産羊腸ケーシング外側のコラーゲン線維の配向とは異な
Fig. 2 Structures of collagen fibers of Japanese and Chinese hog casings observed using the cell-maceration/SEM method. The arrangement of collagen fibers on the external surface of hog casings from Japan (a) and China (b) are generally similar. However, the arrangement of collagen fibers on the internal surface of hog casings from China (d) is different from that from Japan (c).

不規則な繊維状を呈し、むしろ豚腸ケーシングの概観に似ていた。豚腸ケーシングの内側のコラーゲン線維構造は豚腸ケーシング内側とは異なり、オーストラリア産、中国産とも、大きな穴を取り囲むようにコラーゲン線維が走っていた。しかしながら、オーストラリア産豚腸（Fig. 3-c）では繊細なレース状の観けを呈したのに対し、中国産豚腸（Fig. 3-d）のコラーゲン線維は太く、きめの粗い外観を呈していた。従って、コラーゲン線維の太さや配向状態がケーシングの機械特性に影響を及ぼすことが示唆され、特に中国産ケーシングのコラーゲン線維は比較的太く、その配向状態も異なり、きめの粗い外観を呈していた。天然ケーシングのコラーゲン線維構造については報告がないが、天然ケーシングの素材となる小腸粘膜下組織外側のコラーゲン線維構造を観察した報告では、どの動物においてもコラーゲン線維は繊細のようないわゆるコラーゲン線維が観察されることも有効利用法を含めた天然ケーシングの評価指針化について検討しなければならない。

4. 要 約

天然豚腸ならびに豚腸ケーシングの機械特性に及ぼす結合組織の影響について、組織学的・生化
Fig. 3 Structures of collagen fibers of Australian and Chinese sheep casings observed using the cell-maceration/SEM method. (a) The external surface of Australian casing is composed of a textile-like sheet of crisscross arrangement of collagen fibers. (b) Arrangement of collagen fibers on the external surface of Chinese sheep casing is not so much similar to (a) as to that of hog casings. The arrangement of collagen fibers on the internal surface of sheep casings from China (d) is grossly similar to that from Australia (c) but appears to be coarser.

学的分析により検討した。豚腸および羊腸ケーシングのそれぞれにおいて、中国産ケーシングが明らかに硬かった。天然ケーシングの主要成分はコラーゲンであり、幾層するコラーゲン線維のシートから構築されていた。一方エラスチンは量的にも少なく、その存在は血管に限定された。コラーゲン、エラスチンおよびプロテオグリカン含量ならびに組織学的なエラスチン線維の分布や量はすべてのケーシングで違いはなく、天然ケーシングの機械特性にこれらの要因は関与しないと思われた。一方、中国産ケーシングは、コラーゲンの熱安定性が高く、またコラーゲン線維の組織学的構造も異なることから、コラーゲンの熱的・構造的安定性が天然ケーシングの機械特性に影響を及ぼすと考えられる。

文 献
3) 西海理之・国崎隆司・福田 亨・浦田高治・武富真理子・西村敏英, 食肉に関する助成研究調査成果報告書, 15 : 204-210 (1997)
7) 西邑隆徳・高橋信威, 酪農科学・食品の研究, 44 : A165-A176 (1995)
Investigation of Swine Slaughter Inspection System and Sanitation Management of Meat and Poultry

Seijun Ishikawa,Takeru Urushibata and Hisafumi Ikawa
(National Meat Inspection Council)

In 1996, there were some vast outbreaks of foodborne illness casued by E. coli 0157H7 in Japan and abattoir regulation was amended.
On the other hand, in July 1996, United States Department of Agriculture (USDA)/the Food Safety and Inspection Service (FSIS) published the Pathogen Reduction; HACCP system final rule to improve food safety of meat and poultry products, and this rule was applied to all establishments in 25 January, 2000.
This time we investigated the meat and poultry inspection system and the sanitation management in the USA by visiting the slaughter house and poultry processing company, and by participating to the meat and poultry inspection training program for foreign officials produced by USDA/FSIS.
In the United State they introduced steam pasteurization and acid spray system to reduce the number of the organainism of the carcass surface. Furthermore, food irradiation was applied to chicken and pork.
There is a great difference in cultural background between Japan and USA. So we can not introduce all the system in the USA, but we should introduce the good system in the USA, such as steam pasteurization and acid spray system, as soon as possible to supply safety meat to the consumers.

1. 目的

1996年全国レベルで腸管出血性大腸菌O157H7による感染症が流行し，それに伴いわが国，と畜場法施行令，施行規則が改正された。そして大動物にかかる部分についてはすでに1999年4月1日から適用されており，小動物にかかる部分については，2002年4月1日から適用されることになっている。これより従前，疾病排除に大部分の時間を費やしてきた食肉検査システムに加え枝肉の衛生管理の問題が浮上してきた。
当協議会は，以前より欧米諸国の食肉衛生の実態を調査し，その結果を検査システム等に応用することによってわが国の食肉衛生の向上に貢献してきた1-5。今回，米国食肉食鳥肉検査システムについて情報収集とともにHACCPシステムが導入されている米国の食肉処理場および食鳥処理場を視察することにより，適切な処理方法お
2. 方 法

全国食肉衛生検査所協議会から、漆垣健・井川久史の2名を米国に派遣し、米国農務省食品安全検査局（USDA/FSIS）で研修を受けさせるとともに食肉処理場および食鳥処理場の現地観察を行わせた。

3. 結果と考察

3.1 食肉科学研究所（テキサスA&M大学構内）視察

食肉科学研究所は、大学構内にあり、学生や企業からの研修生に食肉製造に関する指導を実施している。施設内には、豚と鶏処理場があり、観察日には、食肉製品製造実習用に使用するための豚が処理されていた。

作業工程は、以下のとおりであった。

(1) 一頭ごと枠内にて電気ショックをあたえる。
(2) 片足を鎖で吊り上げ、頭部切開にて放血する。
(3) 湯割場所へ移動する。
(4) 機械さらにはナイフにより剥取り。残毛は、バーナーにて処理される。
(5) 水洗
(6) 頭部を切断する。
(7) 内臓（消化管・肺・肝臓・腎臓・生殖器）が一括で摘出
(8) 腹部より背割りする。（尾は付いたまま）
(9) トリミング後、洗浄
(10) 枝肉スプレーを実施
(11) 冷却

頭は、一頭ごと頭置き場に置いていた。ナイフ消毒設備は、常時熱湯が流れている状態であった。

作業員は、放血場所1名、湯割1名、剥毛場所2名、頭処理1名は常駐しており、他の3名が電撃、内臓摘出、背割り、トリミング、洗浄、枝肉スプレーを兼任していた。

作業員は、白衣、帽子、ヘルメット、長靴、ゴム手袋を着用していた。

CCPは、3つ設定されていた。CCPIは、汚染物の付着がないことであり、クリティカルリミットは、肉眼的に糞便、乳汁（アメリカでは、乳汁は汚染物と考えており、産後すぐの動物の解体を拒否する処理場もある。）、消化管内容物がないことであった。CCP2は、有機酸スプレー処理であり、クリティカルリミットは、すべての枝肉・頭・その他の肉に、少なくとも2％の有機酸スプレーを行うことであった。CCP3は、冷却であり、クリティカルリミットは、製造・積み出し前に、枝肉・頭・その他の肉の内部温度は、10℃以下にすることであった。

3.2 蒸気殺菌と有機酸スプレー工程

米国では毎年細菌性食中毒で9000人が死亡し、650万人～3300万人が下痢等の症状を呈している。原因食品の主なものは食肉食鳥肉に起因している。特に近年牛・豚の枝肉の表面汚染が問題となっており、衛生的な動物の殺解体処理に加え、糞便汚染した部位のトリミング・スチームパキュームそして有機酸スプレーなどでこの問題に対処している。

（1）枝肉スプレーシステム 1.5～2.0％乳酸、クエン酸または酢酸を枝肉に霧状にふきかけ次に20～50ppmの塩素水を使用する。最後に8～12％のリン酸3ナトリウム溶液を90～110Fで10秒間（30秒以上は行わない）処理することにより細菌数の減少さらには細菌の増殖抑制を計っている。

（2）熱湯またはスティームを用いた枝肉のパキューミング 1インチ以下の糞便および胃内容
物の汚染はナイフによるトリミング、熱湯またはスチームを用いたバキューミングにより取り除かれる。

1インチ以上の糞便および胃内容物の汚染、破裂した潰瘍、寄生虫およびその病変部および乳汁汚染部位はナイフによるトリミングで取り除かれる。

熱湯またはスチームは枝肉表面で最低 180 Fに維持されなければならない。バキュームヘッドは使用中、常に最低 180 Fに維持しなければならない。

（3）スチームバシュラライゼーション スチームバシュラライゼーションとは枝肉を室温でやや陽圧の密封したチャンバー内に入れ、スチームで枝肉全体をスプレーするものである。内臓摘出し枝肉洗浄後に行われる。通常 3工程から成り立っている。

第一工程として枝肉の洗浄後、過度の水をき、スチームからの熱の伝導をよくする。

第二工程として枝肉を165F以上で10秒間スチームのトネルをくぐらせる。30秒行うと肉の色合いに影響が出てくる。

第三工程として枝肉をチラー水で処理する。

スチームバシュラライゼーションは目に見える汚染を取り除くためにナイフによるトリミング。

スチームによるスポットバキューミングのような他の微生物制御法と組み合わせて使用することによって枝肉表面からの病原細菌の除去に効果がある。

スチームバシュラライゼーションあるいは今回述べた他の技術は、微生物制御の問題をすべて解決するものではない。すなわち食肉産業はスチームバシュラライゼーションあるいは今回述べた他の技術を用いて殺菌された商品を提供しているのではない。

3.3 全国微生物基礎データ

HACCP の実行に当たり、全国レベルで牛おおよと豚枝肉、さらには鶏肉の微生物分布の現状を把握し公衆衛生上の危害となり得る特定の微生物（ヒトの食中毒原因菌）についての基礎データを集積し食中毒防止に役立てることとした。この調査に費やす経費は 29〜67億ドルと言われている。

過去の調査では、食中毒発生件数の 8.5％で牛肉およびその製品、14.8％で鶏肉およびその製品が関与しているという結果を得ている。その中でもサーモンペラ、黄色ブドウ球菌、ウェルシュ菌、大腸菌（O157H7を含む）の 4 種が最も問題とされている。

特に今回 FSIS による鶏肉のキャンピロバクター制御プログラムについて説明を受けた。

世界中で胃腸炎の、そして発病の食品由来疾病の原因菌として本菌が注目を浴びてきており、特にカリフォルニア州で発生率が高い）鶏肉の表面が高率に本菌に汚染されていることからリスクアセスメントを実施するために当たりベースライン調査が必要となった。FSIS 本菌の調査を2つのプログラム（Chicken monitoring program/ Campylobacter Young Chicken Baseline Data）を新しい定量法を用いて実施した。

MPNH 法は手間がかかり価格も高くつくが、新しい方法（ARS）であれば Camp-Line 寒天に直接塗抹でき迅速で正確な結果が得られる。
<table>
<thead>
<tr>
<th>実施期間</th>
<th>プログラム</th>
<th>対象</th>
<th>サンプル数</th>
<th>陽性率</th>
</tr>
</thead>
<tbody>
<tr>
<td>94/06〜 95/06</td>
<td>Broiler Chicken Baseline Studies</td>
<td>Broiler</td>
<td>1297</td>
<td>88.2%</td>
</tr>
<tr>
<td>98/10〜</td>
<td>Chicken monitoring program</td>
<td>All class of whole chicken carcass</td>
<td>120 random samples monthly</td>
<td>78.8%</td>
</tr>
<tr>
<td>99/01〜 2000/01</td>
<td>Campylobacter Young Chicken Baseline Data</td>
<td>Young Chicken</td>
<td></td>
<td>67.1%</td>
</tr>
</tbody>
</table>

このように HACCP の導入により本菌による汚染度の軽減が図られた。

4. 要 約

わが国においては、来年 3 月 31 日をもって一連のと畜場法の施行規則等の改正に伴う猶予期限が切れるため今回すでに HACCP システムの導入がすべての畜場に義務付けられている米国の処理システムを視察するとともに現在問題となっている食肉・食鳥肉の衛生管理について情報を入手してきた。

米国のシステムとわが国のシステムの大きく異なる点として、産・官・学のトライアングルが密になっているといやが一見の情報はデータベース化し情報交換がスムーズにいっているとのことであっ

た。そして、監視・調査等すべての面において責任の所在が明らかとなっておりそれぞれがその責任遂行しており、そして一度事故等が発生した際には、FSIS 社が強力な権力を発揮して、事態に対処していると言うことであった。

もちろんすべてのシステムをわが国に導入するわけには行かないが、ハード面・ソフト面の両面での充実が目覚しい HACCP システムについては、早急かつ積極的な導入が望まれる。

本調査研究に当たり、研究費を助成していただいた伊藤記念財団に深謝するとともに、関係機関との連絡調整をしていただいた厚生労働省の佐藤技官に深く感謝します。

文 献
1) 第32回全国食肉衛生検査所協議会全国大会資料, p.81-84 (1996)
2) 第33回全国食肉衛生検査所協議会全国大会資料, p.75-79 (1997)
3) 第34回全国食肉衛生検査所協議会全国大会資料, p.75-81 (1998)
4) 第35回全国食肉衛生検査所協議会全国大会資料, p.75-79 (1999)
5) 第36回全国食肉衛生検査所協議会全国大会資料, p.70-77 (2000)
Priminary Study of Detecting System for Contamination due to Bacteria and Fungi in Meats and Dairy Products

Teruo Ikeda and Masayuki Funaba
(School of Veterinary Medicine, Azabu University)

Dairy products and meats contain a large amount of endotoxin and \(\beta \)-glucan because it was sterilized for killing contaminated microorganisms by heating processes. This may result in adverse effects after intake. For the reason of safety and human welfare, the endotoxin and \(\beta \)-glucan levels of meats and dairy products, especially milk, should be limited. The limulus amoebocyte lysate is suitable to detect endotoxin and \(\beta \)-glucan contents in blood and urine samples. Recently this assay used to check the contamination with endotoxin and \(\beta \)-glucan in serum for cell culture, drinking water and medicine products et al.

To assess the contamination of meats and dairy products, we investigated the detectable usefulness of endotoxin and \(\beta \)-glucan specific limulus test using chromogenic substrate for screening products, which contaminated with bacterial and fungal constitutions.

Endospecy and G-test as limulus chromogenic substrate test were employed for measuring endotoxin and \(\beta \)-glucan, respectively. The pretreatment methods were compared for the effectiveness in the removal of activator or inhibitor from samples. The results show that recovery rate in milk yields approximately 100% from diluted milk as well as it treated with PCA. However, either inhibitor or activator for assay in meat could not be completely eliminated by heating extraction. In treatment for assay, nonspecific activators and inhibitors of the assay were eliminated by exposing samples to the alkali reagents containing of KOH, CaCl\(_2\), Triton X-100, ethlenimine-pollymer and N, N-bis (2-hydroxyethyl) glycine.

Among commercial milks, sterilized milk, heated at 130\(^\circ\)C for 2 second (UHT method), had an especially high value (concentration) of endotoxin (20868.57±14022.81pg/ml), whereas pasteurized milk, heated at 62-65\(^\circ\)C for 30 min (LTLT method), contained low concentration of endotoxin (625±374.76pg/ml). There was apparent significant difference found between LTLT and UHT method in heating process.

We conclude that screening of endotoxin by using Endospecy test, a new chromogenic substrate limulus test specific to endotoxin, seems to have a big benefit in selecting contaminated milks. These results suggest that there is a possibility that milk containing high value of endotoxin may give an adverse influence to a body.
1. 目的

エンドトキシン測定法であるリムルステストは、現在医薬関連製品におけるウサギ発熱活性測定に替わる検査法として広く用いられている。エンドトキシンの影響はDICを始めとした各種疾患や免疫機能に影響を及ぼすことが知られており、また、その汚染は公衆衛生学上も社会問題化されている。一方、リムルステストの改良に伴いグラム陰性菌の細胞壁構成成分であるエンドトキシンに特異的な反応系と真菌の細胞壁構成成分であるβグルカンに特異的な反応系が開発され、試験管内で簡単にエンドトキシンおよびβグルカンを定量できるようになった。

最近問題になった医療用に使用されている器材、補液、蒸留水、組織培養用血清でのエンドトキシンによる高濃度汚染や飲料水での真菌体やβグルカンによる食品汚染もまた重要な問題として注目されてきている。現在まで、感染症に関連した両測定法に関する研究は数多く認められているが、食品関連での本法によるエンドトキシンおよびβグルカンの汚染測定に関する研究はほとんど行われていないのが現状である。そこで、本研究では、食肉および乳製品に対する両測定法の測定条件を確立し、その測定法を用いてエンドトキシンおよびβグルカンによる食肉および乳製品の汚染度を調査し、今後問題になるであろう両物質による污染研究の基礎的なデータを得ることを目的としている。

2. 方法

（1） 器具、試剤および検体：ガラス器具類は250℃、2時間加熱後してエンドトキシンおよびβグルカンフリーとした。プラスチック製品については、生化学工業市販のエンドトキシンおよびβグルカンフリー製品（トキシペットサンプラーチップ、トキシペットディスペンザーシリ

Endotoxin assay(Endospecy)

5 µl sample(Toxipet microplate 96F)

→ 20 µl 0.1% TritonX-100, 0.1M KOH, 0.1% Polybrene, 0.03M Bicine, 0.07% Ethyleneiminepolymer, 0.1M CaCl₂ (TPP-BEC) を20µl 加え、インキュベータ内蔵マイクロプレートリーダー（ウェルリーダー SK601, 生化学工業）にセットし、37℃、10分間加温処理した。処理後、0.1M Tris-HCl 緩衝液（pH 8.0）の5.6 ml に溶解したエンドトキシン特異的合成基

Kinetic Assav Δ405-492nm/min

Fig. 1 Protocol for kinetic assay of endotoxin in meats and dairy products.
βグルカン測定法：βグルカンの測定には、G-test（生化学工業）を使用した。その測定方法はFig. 2に示した。すなわち、検体5μlを96穴トキシペットマイクロプレートに採取し、アルカリ試薬0.15M KOH, 0.3M KCl, 0.1% Polybreneを20μl加え、インキュベータ内蔵マイクロプレートリーダー（ウェルリーダー SK 601,生化学工業）にセットし、37℃, 10分間加温処理した。処理後、0.1M HEPES（N-2- hydroxyethyl - piperaxine - N'-2 ethanesulfonic acid）緩衝液（pH 7.6）の5.6mlに溶解したβグルカ
ン特異的合成基質法リムルテスト試薬（Gテスト, 生化学工業）を100μl加え、37℃, 30分反応させた。測定はエンドトキシン同様、405nm（対
照吸光度492nm）の吸光度変化を15秒間隔で記録解析し、1分間当たりの吸光度変化率を求め、エ
ンドトキシン標準品の検量線から検体中のエンドトキシン濃度を検出した。

（3）βグルカン測定法：βグルカンの測定にはG-test（生化学工業）を使用した。その測定方
法はFig. 2に示した。すなわち、検体5μlを96穴トキシペットマイクロプレートに採取し、アルカリ試薬0.15M KOH, 0.3M KCl, 0.1% Polybreneを20μl加え、インキュベータ内蔵マイクロプレートリーダー（ウェルリーダー SK 601,生化学工業）にセットし、37℃, 10分間加温処理した。処理後、0.1M HEPES（N-2- hydroxyethyl - piperaxine - N'-2 ethanesulfonic acid）緩衝液（pH 7.6）の5.6mlに溶解したβグルカ
ン特異的合成基質法リムルテスト試薬（Gテスト, 生化学工業）を100μl加え、37℃, 30分反応させた。測定はエンドトキシン同様、405nm（対
照吸光度492nm）の吸光度変化を15秒間隔で記録解析し、1分間当たりの吸光度変化率を求め、エ
ンドトキシン標準品の検量線から検体中のエンドトキシン濃度を検出した。

（4）検体前処理法の検討：検体の前処理法として、アルカリ処理法, PCA処理法, 加温法を
エンドトキシン添加回収率によって検討した。

（5）添加回収試験：検体に標準エンドトキシンおよびβグルカンを最終濃度100pg/mlに添加し、（2）（3）に記載したエンドトキシン・βグルカ
ン測定法に従って、添加回収率を測定した。

（6）添加回収率に及ぼす希釈の影響：検体に
（5）と同様のエンドトキシン・βグルカンを添加し、（5）と同様に添加回収率を測定し希釈による
添加回収率への影響を検討した。

（7）市販食肉および乳製品検体の測定：上記
検討結果をもとに市販の食肉および乳製品（主体は牛乳）のエンドトキシン測定を実施した。

3. 結果と考察

3.1 前処理法によるエンドトキシン添加回収
率

乳製品の前処理法では従来から乳汁で行われて
いたPCA処理法と同様、希釈後のアルカリ処理
により阻害および促進物質の除去が可能であり、
ほぼ100％の添加回収率が得られた（Table 1）。
従来の検体であった乳汁のエンドトキシン検出
の目的は乳成分の診断であったことから、乳成分
から直接抽出した原液の乳汁を検体として用いたため、
種々タンパク質や細胞などの阻害・促進物質の混
入が高濃度であったが、乳製品、とくに乳液では
製造過程で原液の希釈があるため、PCA（過塩素
酸）による前処理は必要で、希釈後のアルカリ
処理で充分測定が可能であると考えられた。

食肉では、抽出のための検体処理（ホモジナイ
ズ）による抽出効果による差が認められた。前処

Fig. 2 Protocol for kinetic assay of β-glucan in meats
and dairy products.
理法としてはホモジナイズ検体を使用するため加温法を中心に検討を進めが、若干の主に阻害が中心と思われる添加回収率のバラツキが認められた（Table 1）。食肉の前処理方法については、今後多検体迅速測定のための加熱時間および付加する処理法の検討などの改善の必要性が強く示唆された。

これらの結果より、今回の検討は乳製品、とくに牛乳を中心に検討した。

3.2 添加回収試験
エンドトキシンおよびβ-グルカン添加牛乳の前処理後のにおける添加回収率はほぼ100％であり、再現性も良好であった（Table 2）。同時に行った検量線でも標準品の検量線とほぼ重なっていた（データ未掲載）。これらの結果は、本測定系によるエンドトキシンおよびβ-グルカンの値は実際の両物質の汚染濃度を反映していることが示唆された。

3.3 添加回収率におよぼす希釈の影響
エンドトキシン添加牛乳の前処理後のにおける希釈による添加回収率の影響を検討した結果をTable 3に示した。結果が示すとおり、希釈による測定値への影響はまったく認められなかった。

Table 1 Effects of various treatment on the recovery of endotoxin and β-glucan in meats and dairy products

<table>
<thead>
<tr>
<th>sample</th>
<th>pretreatment</th>
<th>recovery rate (%) (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>milk</td>
<td>PCA</td>
<td>105.7±5.3</td>
</tr>
<tr>
<td>milk</td>
<td>Dilution + Alkaline</td>
<td>104.1±3.6</td>
</tr>
<tr>
<td>meat</td>
<td>PCA</td>
<td>70.4±30.4</td>
</tr>
<tr>
<td>meat</td>
<td>Heat extract at 121°C for 5 min</td>
<td>82.6±24.3</td>
</tr>
<tr>
<td>meat</td>
<td>Heat extract at 99°C for 10 min</td>
<td>97.2±17.5</td>
</tr>
</tbody>
</table>

Table 3 Effects of dilution of treated samples on endotoxin recovery

<table>
<thead>
<tr>
<th>sample</th>
<th>dilutions</th>
<th>recovery rate (%) (n=6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>milk</td>
<td>×10</td>
<td>102.1±5.3</td>
</tr>
<tr>
<td></td>
<td>×100</td>
<td>95.5±2.6</td>
</tr>
<tr>
<td></td>
<td>×1000</td>
<td>107.1±6.5</td>
</tr>
</tbody>
</table>

Table 4 Concentration of endotoxin in commercial product milks

<table>
<thead>
<tr>
<th>category of milk</th>
<th>concentration (pg/ml) (n=5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sterilized milk at 130°C for 2 sec</td>
<td>20868.57±14022.81</td>
</tr>
<tr>
<td>Pasteurized Milk at 63-65°C for 30 min</td>
<td>625.00±374.76</td>
</tr>
<tr>
<td>Reconstituted milk</td>
<td>7026.67±2993.04</td>
</tr>
</tbody>
</table>

この結果は、高濃度に汚染されている検体においても、本希釈法を用いることにより正確に原液でのエンドトキシン濃度を測定できることを示唆しているものと思われる。

3.4 市販食肉および乳製品検体の測定
市販の乳製品としては、牛乳を中心としてその他加工乳のエンドトキシンを測定した。

その結果をTable 4に示した。牛乳では殺菌方法（高温短時間殺菌120°C 3分間および低温長時間殺菌60°C 30分間）により2種類に分類した。高温短時間殺菌牛乳の平均エンドトキシン濃度は20868.57±14022.81pg/mlであり、一方低温長時間殺菌乳では625.00±374.76pg/mlであり、牛乳では明らかに殺菌方法の違いによりエンドトキシン污染濃度に差異が認められた。今回の結果より、市販乳製品の汚染は予想を遥かに上回る高濃度に認められた。経口摂取によるエンドトキシンの吸収はほとんどなく、また吸収されたとしても迅速に肝臓での解毒が成立するため生体への影響は少ないものと考えられるが、消化器疾患、とくに消化器の外傷（胃腸や外科手術など）からの過剰な吸収や肝臓疾患による解毒能の低下、あるいは乳幼児などの無解毒能の低いものなどへ
の影響は少なからず成立していることが予想され、これらを念頭においた基礎的なデータの集積も重要な課題と考える。また、本研究でのデータのさらなる蓄積も今後の研究に多大な貢献をもたらすことが予想され、継続実験の必要性が示唆されたものと思われる。

4. 要 約

乳製品や食肉はその加工製造過程において過熱殺菌処理されるため、多くのβグルカンやエンドトキシンが混入する。それらの工程により生じたβグルカンやエンドトキシンは多量に摂取することにより、生体に弊害をもたらす可能性がある。安全性と健康への配慮という観点から高濃度に汚染された食肉および乳製品は選択的に除かれるべきである。カプトガニの血球成分であるライセートを利用したリムテストは尿や血液などに含まれるβグルカンやエンドトキシンの検出に広く用いられている。近年、その応用は製剤や医療用透析膜などにも利用されている。

本研究では、食肉および乳製品の品質検査のスクリーニング法として、エンドトキシンとβグルカンに特異的なこれらの検出法が利用可能かどうかを検討した。測定方法は、エンドトキシンおよびβグルカンに特異的であるリムテスト合成基質法であるエンドスペシー法（Endospecy）とGテスト（G-test）を使用した。促進および阻害物質の除去のための検体前処理法として、乳製品では希釈法、食肉では加温抽出法が有効であった。測定時における検体処理は、両検体ともアルカリ処理法により測定が可能であった。

本法を用いた市販の牛乳のエンドトキシン汚染検査では、高温短時間殺菌牛乳は高値を示したが、低温長期殺菌では明らかに低値を示した。今回、の結果から、両検出方法は、食肉および乳製品の汚染度検出方法として有用であることおよび今回、の成績に見られるような非常に高濃度のエンドトキシンによる牛乳汚染は、生体に何らかの悪い影響を及ぼしている可能性が示唆された。

文献
12) 切替照雄, 田中重則, 田村弘志, 組織培養工学, 24, 81-84, 1998.
密封包装詰加熱食肉製品における
ボツリヌス菌の制御法に関する研究

Control of *Clostridium botulinum* in Meat Products
Pasteurized in Hermetically Sealed Containers

小 崎 俊 司（大阪府立大学大学院農学生命科学研究科）

Shunji Kozaki (Graduate School of Agriculture and Biological Sciences, Osaka Prefecture University)

We examined the toxin production of *Clostridium botulinum* type A and B in meat products pasteurized in hermetically sealed containers. In commercial meat products with or without soup which had been inoculated into 10^5 spores/ml or g and incubated anaerobically above 20°C, the organisms produced the toxin amount of 10^4 to 10^5 LD$_{50}$/ml within a week. At 15°C, toxin was detected at the same level after 2 to 3 weeks, but no toxin was found at 10°C incubation. It seems that toxin production is related with the number of spore inoculated because the toxin was hardly detected in the samples contained 10^6 spores/ml or g. These observations indicate that temperature regulation is much important to prevent the occurrence of botulism food poisoning.

1. 目的

ボツリヌス菌（*Clostridium botulinum*）は、芽胞形成能をもつ嫌気性グラム陽性の桿菌であり、自然界の中で最も高い毒性を示すタンパク性毒素を産生する。菌は産生する毒素の抗原性の違いによりA～Gの7型に分類される。菌の生化学的性状およびDNAの相似性から4群（第I～IV群）に区別できるが、毒素型による分類とは一致しない。わが国では第II群菌に属するタンパク非分解性のE型菌を原因菌とする魚介類由来の食中毒事例が東北、北海道地方を中心として多数発生し、日本特有の食文化を背景とする特異な食中毒発生形態を示すことが知られている。

食品衛生上、ボツリヌス菌は産生する芽胞の高耐熱性、産生される毒素の持つ極めて高い致死活性性から密閉包装詰食品における危険度の高い病原微生物として非常に古くから指摘され、実際、古典的な密閉保存食品である缶詰における殺菌基準は、第I群菌に属するA型菌が対象になっていることは周知の事実である。

これまでボツリヌス菌の中毒発生の原因となった毒素型は、芽胞の分布と一致することが知られていたが、近年の世界的規模での物流の増大や食生活の変革に呼応する形で、その中毒の原因食品も変化しつつある。たとえば、輸入瓶詰食品、密封包装詰食品によるA、B型菌による中毒事例が相次いで発生し、特にA型中毒はいわゆるレトルト食品に類似した密封包装詰食品で「要冷蔵」の保管形態で安全性を保障するという低酸性食品で
あった。加圧滅菌を施した食品以外の密封包装詰
食品においては、pH 4.6，水分活性0.94を越
るものについてはポツリヌス中毒の可能性は不可
避であり，これらの食品における安全性を確保す
るためには，各食品における毒素産生の可能性を
評価することが必要である。本研究では，密封
包装詰食品へのポツリヌス菌芽胞の接種実験を行
い，毒素産生の継時的推移を検討することにより，
これらの食品の安全性確保に必要な要件の基礎的
知見を求めることを目的とした。

2. 材料と方法

2.1 芽胞の調製

ポツリヌスA型菌として62A株，B型菌として
Okra 株を使用した両菌株ともに毒素産生条件お
よび毒素の性状が詳細に検討されており，Okra
株はわが国における抗毒素調製の標準株である。
各保存菌株をクックドミート培地（0.3％グルコ
ース，0.2％可溶性デンプンを添加）で30℃，1
晩培養した後，芽胞産生増殖体（5％トリプナケ
ース，0.5バクトペブトン，0.1％チオグリコール
酸ナトリウム，pH 7.2）に接種し，30℃，6日
間培養した。培養後遠心により芽胞を集め，滅菌
蒸留水で懸濁し80℃，15分間加熱処理した後-
20℃で使用時まで保存した。使用直前に芽胞混
濁液を適当に希釈し5%卵黄，0.1%システム
含有GAM寒天培地で育成するコロニーより芽
胞数を計測した。

2.2 芽胞の接種実験

「要冷蔵」の表示で市販され，加圧加熱滅菌を
施していない肉類製品を用いた。液状物を含む製品
については，内容物10mlを無菌的に滅菌パッチ
に移し，芽胞懸濁液 0.1 ml（最終芽胞数，10〜
10^9/ml）を接種した。パッチの口を封じ15〜
30℃で培養し継時的に毒素産生の有無を調べた。
固形物については，肉塊を20 g切り取り無菌的に

5 30% CO₂, 80% N₂存在下で培養した。

2.3 毒素の検出および定量

一定頻間放置した芽胞接種食品に対して同量の
0.5mg/ml ストレプトマイシンおよび300U/ml
ペニシリン含有 0.2％ゼラチン加リン酸緩衝液
（pH 6.2）を加え，ストマッカーで十分に混和し
た後，4℃10分間を行い上清中の毒素を調べた。
A型菌を接種検体については，遠心上清をさらに
再2倍希釈し，B型菌接種検体は最終濃度が0.2
mg/ml になるようにトリプシンを加え毒素の活性
性化を行った。毒素の検出は各検体 0.5ml を5
週齢雄マウスの腹腔内に接種し，4日間生存を観
察した。24時間以内にマウスが死亡した検体につ
いては，適当に希釈し0.1ml をマウス尾静脈内
に投与し死亡するまでの時間を測定し，標準直線
から毒素量を算出した。24時間以上経過した場
合には，検体を2倍段階希釈を行い接種マウスの
半数が死亡する希釈倍数を求めることにより毒素
量を決定した。検体中の産生された毒素が接種
した菌が同一の血清型を持つことを確認するために
抗毒素による中和反応を行った。

3. 結 果

3.1 液状物製品

スーペース状の製品（製品A，カレーうどんの素）
を用いて，毒素産生の可能性のある条件を求める
ために，培養温度，培養時間，接種芽胞数の影響
を調べた。A型菌芽胞を10^6個/ml になるように
接種し20℃と30℃における毒素産生の有無を調べ
た。毒素はいずれの培養温度でも培養3日目で検
出された（表1）。培養温度が10, 15および20℃
とし，接種芽胞数を10, 10^3, 10^4個/ml としたと
きの毒素産生の継時的推移を3週目まで調べた。
表1 Toxin production in curry soup inoculated with type A spores

<table>
<thead>
<tr>
<th>Temperature (℃)</th>
<th>Incubation (day)</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>20</td>
<td>0/2*1</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>0/2</td>
<td>1/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
<td>2/2</td>
</tr>
</tbody>
</table>

*1 number of death/number of mice inoculated. The samples incubated 10^6 spore/ml were incubated anaerobically and examined the toxin production by mouse bioassay.

フハンバーグ）に直接A型菌芽胞懸濁液を接種し15および20℃で培養を行い毒素産生の有無を調べた。20℃培養では10^6個/gで培養5日目に毒素が検出されたが、接種芽胞数10^6個/gでは培養21日目、また10個/gでは毒素は検出されなかった（表3）。さらに接種芽胞数10^6個/gでのA型およびB
型菌の種々の温度条件における毒素産生量の推移を詳細に検討した。培養温度30℃においては、

接種芽胞数10^6個/mlで20℃培養5日目で検出され、15℃の培養においては21日目に毒素が産生されていることが分かった。接種芽胞数10^6個/mlでは、培養20℃、21日目にのみ毒素が検出された。接種芽胞数10個/mlではいずれの温度条件下でも毒素は検出されなかった（表2）。

3.2 固形物食品

適当な大きさに細断した肉塊物（製品B、ビーフハンバーグ）に直接A型菌芽胞懸濁液を接種し15および20℃で培養を行い毒素産生の有無を調べた。20℃培養では10^6個/gで培養5日目に毒素が検出されたが、接種芽胞数10^6個/gでは培養21日目、また10個/gでは毒素は検出されなかった（表3）。さらに接種芽胞数10^6個/gでのA型およびB
型菌の種々の温度条件における毒素産生量の推移を詳細に検討した。培養温度30℃においては、

接種芽胞数10^6個/mlでは20℃培養5日目で検出され、15℃の培養においては21日目に毒素が産生されていることが分かった。接種芽胞数10^6個/mlでは、培養20℃、21日目にのみ毒素が検出された。接種芽胞数10個/mlではいずれの温度条件下でも毒素は検出されなかった（表2）。

接種芽胞数10^6個/mlでは20℃培養5日目で検出され、15℃の培養においては21日目に毒素が産生されていることが分かった。接種芽胞数10^6個/mlでは、培養20℃、21日目にのみ毒素が検出された。接種芽胞数10個/mlではいずれの温度条件下でも毒素は検出されなかった（表2）。

接種芽胞数10^6個/mlでは20℃培養5日目で検出され、15℃の培養においては21日目に毒素が産生されていることが分かった。接種芽胞数10^6個/mlでは、培養20℃、21日目にのみ毒素が検出された。接種芽胞数10個/mlではいずれの温度条件下でも毒素は検出されなかった（表2）。

<table>
<thead>
<tr>
<th>Spore inoculated (ml)</th>
<th>Incubation (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^6</td>
<td>1/2</td>
</tr>
<tr>
<td>10^5</td>
<td>2/2</td>
</tr>
<tr>
<td>10</td>
<td>0/2</td>
</tr>
</tbody>
</table>

*1 number of death/number of mice inoculated.

表2 Toxin production in curry soup inoculated with various number of spores of C. botulinum type A

<table>
<thead>
<tr>
<th>Spore inoculated (g)</th>
<th>Incubation (day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10^3</td>
<td>20</td>
</tr>
<tr>
<td>10^2</td>
<td>20</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
</tr>
</tbody>
</table>

3.2 固形物食品

接種芽胞数10^6個/mlでは20℃培養5日目で検出され、15℃の培養においては21日日に毒素が産生されていることが分かった。接種芽胞数10^6個/mlでは、培養20℃、21日目にのみ毒素が検出された。接種芽胞数10個/mlではいずれの温度条件下でも毒素は検出されなかった（表2）。

接種芽胞数10^6個/mlでは20℃培養5日目で検出され、15℃の培養においては21日目に毒素が産生されていることが分かった。接種芽胞数10^6個/mlでは、培養20℃、21日目にのみ毒素が検出された。接種芽胞数10個/mlではいずれの温度条件下でも毒素は検出されなかった（表2）。
表4 Toxin production in beef hamburger inoculated with C. botulinum type A or B spore at 10^3 per gram

<table>
<thead>
<tr>
<th>Type</th>
<th>Temp (°C)</th>
<th>Incubation (day)</th>
<th>3</th>
<th>5</th>
<th>7</th>
<th>14</th>
<th>21</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>30</td>
<td>5.3×10^3</td>
<td>1.9×10^3</td>
<td>2.0×10^3</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>3.5×10^4</td>
<td>3.1×10^4</td>
<td></td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>2.1×10^3</td>
<td>6.8×10^3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>20</td>
<td>4.9×10^3</td>
<td>1.2×10^4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>40</td>
<td>5.8×10^3</td>
<td>1.2×10^4</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>ND</td>
<td>ND</td>
<td>9.6×10^3</td>
<td>1.3×10^4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
<td>8</td>
</tr>
</tbody>
</table>

a）Toxin amount detected (LD_{50}/ml)
b）Not tested
c）Not detected

毒素が検出された（表4）。

4. 考察

長期保存食品として缶詰に代表されるような密封包装詰食品の安全性対策の中で、最も問題となるボツリヌス菌による中毒を予防するために加圧加熱処理が施されていた。しかし、消費者の食品に対する多様化に合わせるように種々の調理済み食品が加圧加熱処理されずに密封した包装形態で市販されるようになってきている。これらの食品におけるpHおよび水分活性がボツリヌス菌の増殖・毒素産生条件を阻害する条件を満たさない場合、消費者に対しては「要冷蔵」の注意書きののみ安全性を求めると極めて容易の低い方法をとっているのが現状である。本研究では、これら「要冷蔵」表示のある密封包装詰食品におけるボツリヌス菌の増殖・毒素産生の基礎的知識を得るために接種芽胞数、培養温度による影響を調べた。

冷蔵保存を要する密封包装食肉食品の中で、液体成分の多い製品と固形物の製品を検体として、ボツリヌス菌芽胞を接種し毒素の篩時的産生変化を調べたところ、いずれの製品においても接種する芽胞数が1mlあるいは1g当たり10個程度で試験結果では、消費期限内である3週間程度の室温では毒素産生の可能性は低いことが分かった。一方、高濃度の芽胞接種（10^5個/gあるいはml）では、室温以上の保存では数日間で速やかに毒素が産生され、産生量から推定してこれまで考えられているヒトの致死量（数μg：毒素量換算、〜10^5LD_{50})に至るには約100g程度の摂取量で足ることが推察された。本実験では液状の製品より固形物の製品の方が産生される毒素量が高い傾向がみられた。今後、この点について詳細な検討が必要と思われるが、一般にはボツリヌス菌の発芽・増殖過程の晩期に要求される低い酸化還元電位で、ビーフハーバーガのような食肉固形物の方がよりよく形成されるようであると想定される。ビーフハーバーガでは、A型およびB型菌のいずれにおいても、15℃培養、2週間目には10^4LD_{50}/g以上の毒素が産生されたことは、ボツリヌス中毒対策上、密封包装食品の温度管理は厳密な条件を要求されることが示唆している。

ボツリヌス菌は同型の菌株間で毒素産生能、芽胞の耐熱性、発芽・増殖過程が異なることが経験的に知られているが、食品中の毒素産生条件を推定するための基準株は定められていない。本実験では、これまで多くの研究対象となっている毒
素産生能の高い菌株を使用したが、米国のポツリヌス菌検査においては同型の複数の菌株を同時に接種し毒素産生を調べることが推奨されており、今後これに合わせた実験を実施する予定である。また、食材により産生される毒素の構造および経口毒性に違いがあることが報告されており、加工食肉製品において産生された毒素の性状の検討も必要であると思われる。

5. 要約

密封包装誘加熱食肉製品の中で、「要冷藏」の表示により安全性を保障しようとしている製品におけるポツリヌス菌の毒素産生について調べた。スープ状の製品および固形状の食肉製品とともに接種芽胞数10^9個/ml あるいはg では、20℃以上では培養1週間以内に10^4〜10^5LD_50/m gの毒素が産生された。15℃においては培養2〜3 週間目で同程度の毒素産生が認められたが、10℃では毒素の産生はみられないと考えられた。一方、接種芽胞数が10個/mL あるいはg ではいずれの条件でも毒素は検出されなかった。B形菌においても芽胞を10^6個/g 接種した際には、毒素産生量はA形菌と比べて少しは劣るが、中毒を発生させるに十分な量が検出された。これらの結果から、上述の食肉製品におけるポツリヌス中毒予防には保存の際の温度管理が非常に重要であることを示している。

文献
L-カルニチンが培養心筋細胞の脂肪酸
取り込みおよびATP産生に及ぼす影響

Effect of L-carnitine on Utilization of Fatty Acid and ATP Production in Cultured Cardiac Myoblasts

西邑 隆徳・*若松 純一・辰巳 隆一・服部 昭仁
（北海道大学大学院農学研究科、*伊藤ハム株式会社中央研究所）

Takanori Nishimura,*Jun-ichi Wakamatsu, Ryuichi Tatsumi and Akihito Hattori
(Graduate School of Agriculture, Hokkaido University and *Central Research Institute of Itoham Foods Inc.)

Carnitine is an essential co-factor in mitochondrial transport and oxidation of long-chain fatty acids in cells. In this study, we have investigated the uptake of L-carnitine by cardiac myoblasts prepared from chick embryo and its effect on fatty acid utilization and ATP production by them. ATP concentration in the culture medium containing 1 mM L-carnitine was higher than that without L-carnitine at 12 hour cultured, although the uptake of L-carnitine and the utilization of fatty acid were not different between them. These results suggest that L-carnitine may be one of the important factors in ATP production of cardiac muscle cells.

1. 目的

食肉は昔から滋養強壮効果のある食べ物とされており、中でも牛肉は精力や活力などの滋養強壮効果のイメージが特に強い。近年、食肉中の生理活性物質が注目されはじめ、食肉から抽出された様々な物質の生理機能が明らかにされつつあるが、食肉の持つ抗疲労効果が食肉中のどの物質によって、どのような作用機序で発現されるのかについてはほとんど明らかになっていない。

若松ら1) は、マウスを用いて遊泳運動負荷実験を行い、タンパク質源として牛肉を与えたマウスはカゼインを与えたマウスに比べて運動持続性が高く、また、運動負荷前の血中カルニチン含量およ

1) The Ito Foundation
著者らは、物理的伸縮を与えた筋細胞におけるL-カルニチンの取り込みを検討した結果、物理的伸縮によって細胞増殖が盛んになった筋衛星細胞でのL-カルニチンの取り込みがやや増加する傾向がみられることが報告している8。しかし、これが筋細胞の脂質代謝にどのような影響を及ぼしているのかは不明である。また、この培養実験系では、生体における運動をin vitroの培養系で再現することを目的に物理的伸縮を筋細胞に与えたが、筋細胞側からすればこれは受動的運動となる。臨床試験でみられた、L-カルニチンの運動能力改善効果5やその後の回復効果6は生体の自発的運動時にみられたものであり、in vitroの培養系においても、自発的に運動するような細胞を用いて、L-カルニチンと細胞活動との関連を明確していくことが必要と思われる。

そこで、本研究では、生体時の運動負荷におけるin vitroモデル系として自発的に収縮・弛緩を繰り返すような条件下で培養した心筋細胞を用いて、脂質代謝とカルニチン消費量との関連を検討し、L-カルニチンが筋細胞に及ぼす影響についての基礎的見解を得ることを目的とした。本研究は、食肉の持つ運動能力改善効果あるいは抗疲労効果の発現機構を細胞レベルで明らかにすることにより、食肉の有効利用の拡大に寄与しようとするものである。

2. 材料および方法

2.1 実験材料
孵卵12日目の鶏胚を実験材料として使用した。

2.2 心筋細胞の培養

鶏12日目胚から採取した心臓をハサミで細切し、0.05%トリプシンで酵素処理を行い、回収した細胞をポリ-L-リジンおよびフィブロネクチンでコートしたdishに播種し、10%ウシ胎児血清、1%抗生物質抗菌薬剤溶液および0.5%ゲンタマイシンを含むDulbecco’s Modified Eagle Medium培地（10% FBS-DMEM）を用い37℃、5.0 % CO2で24時間培養した（前培養）。前培養24時間後、すべてのdishにおいて、細胞が接着し拍動していることを確認した後、dishを2つのグループに分け培養液を無血清培地（OPTI-MEM, Life Technologies社）（対照区）および無血清培地にカルニチンを1mM添加したもの（カルニチン添加区）に交換し、さらに36時間培養を継続した。

2.3 培養液中のカルニチン含量

無血清培地に交換してから培養12時間後、24時間後、および36時間後に培養上清を採取し、分析まで-80℃で保存した。培養液中のカルニチンの含量はMarquis & Fritzの方法を用い測定した。すなわち採取した培養液を4℃以下に加温しながら遠心エハパレーターで乾固し、0.3M過塩素酸を加え、良く攪拌溶解後、15分間水冷した。3000回転で10分間遠心分離した後、上清を500μl採取し、100μlの1.2M炭酸カリウムを加え、良く攪拌し、水冷下で10分間保持、遠心分離（3000回転、10分間）したあと、上清を遊離L-カルニチン測定用に使用した。カルニチン含量はマイクロプレートリーダー（Bio-Rad社製、Model 550）を用いて測定した。

2.4 培養液中の遊離脂肪酸含量

凍結保存しておいた培養上清を室温で解凍し、NEFA-テストワーキー（和光純薬工業株式会社）を使用して培養液中の遊離脂肪酸量を測定した。

2.5 培養液中のATP含量

培養液中のATP量はATP測定用試薬キット（ルシフェール250、キッコーマン社）を使用し、ルミテスターC-100（キッコーマン社）を用いて測定した。凍結保存しておいた培養上清を室温で解凍し、0.2mlをルミチューブに入れ、発光試薬を0.1mlを加えた後5秒間攪拌し、ルミテスター
3. 結果と考察

前培養開始から培養心筋細胞は、培養24時間後にはディッシュ中でコンフルエントになり、自動的拍動がみられるようになった。この状態で培地を無血清培地（対照区）および無血清培地にL-カルニチンを添加した培地（カルニチン添加区）に交換し、さらに36時間培養を続けた。いずれの区においても、培養12時間後には細胞塊を形成し、これが一定のリズムで拍動していた。培養24から36時間後には細胞密度は増加したが、細胞の形態および細胞塊の拍動様相に処理間で大きな差は認められなかった（図は示していない）。

脂肪の主要構成成分の一つである長鎖脂肪酸は主にミトコンドリア基質内でβ酸化を受けてアセチルCoAとなり、さらにTCAサイクルで分解されながら、酸化的リン酸化によってATPを産生する。しかし、長鎖脂肪酸単独ではミトコンドリア内に入ることができず、L-カルニチンが必要となる。すなわち、L-カルニチンは細胞がエネルギーを必要とする際に細胞内に取り込まれた長鎖脂肪酸を利用してこれに必須の物質である。Nishidaらは、ラットの培養肝細胞を用いて、肝細胞内のL-カルニチン含量は外部からのL-カルニチン供給（培地への添加）がないと減少すること、培地へのL-カルニチン添加量に依存して肝細胞のATP産生やグリコーゲン合成が高まることを報告している。また、ラット肝細胞のケトン体産生は外因性カルニチン存在下でのみグルカゴンによって促進されることが報告されている。培養心筋細胞が自動拍動を持続するために長鎖脂肪酸をエネルギー源として利用しているとすればカルニチンが必要であり培地からのカルニチンの取り込みが亢進されるものと考えられる。

Fig. 1 Changes in the concentration of free carnitine in the culture medium. Cardiac myoblasts prepared from chick embryo were incubated in the medium containing 1 mM L-carnitine (●) or without L-carnitine (control, ○). Values represent the means with standard errors.

そこで、鶏胚由来培養心筋細胞が自動的拍動している際に培養上清からのカルニチン取り込みがあるか否かを明らかにするために、培養上清中的遊離カルニチン含量の変化を調べた（Fig. 1）。L-カルニチン無添加の対照区では培養開始から12時間後までは培養上清中のカルニチン濃度はほぼ一定の値で推移した。カルニチン添加区ではやや増加する傾向がみられたが、有意な増加ではなかった。このように、両区ともに培養上清中のカルニチン濃度の培養時間に伴う減少は認められず、培養心筋細胞によるカルニチンの取り込みは見かけ上はないことが示された。しかし、脂肪酸とともに取り込まれたカルニチンがミトコンドリア内において脂肪酸から遊離し、再び細胞外へと放出されるのであれば、培養上清中のカルニチン濃度は見かけ上変化がないことになる。そこで、培養心筋細胞が自動的拍動を行い立際の脂質代謝を調べるために、培養上清中の遊離脂肪酸量を測定した（Fig. 2）。カルニチン添加区では培養開始から12時間後まで培養上清中の遊離脂肪酸量が減少する傾向が見られたが、有意な差ではなかった。培養12時間後から36時間後にかけては培養
上清中の遊離脂肪酸は一定の濃度で推移した。また、対照区では培養開始から36時間後まで培養上清中の遊離脂肪酸はほぼ一定の濃度で推移した。Nishidaらはラットの培養肝細胞を用いて、培地へのL-カルニチンの添加量に依存して肝細胞のATP産生が高まることが報告している。そこで培養心筋細胞における培養上清中のATP濃度を測定し、カルニチン添加によるATP産生への影響を調べた（Fig. 3）。対照区においては培養開始から24時間後まで培養上清中のATP濃度は増加し、それ以後は減少していく傾向がみられた。カルニチン添加区では培養開始から12時間後まで急激に増加し、その後、減少する傾向がみられた。培養上清中のATP濃度の変化は培養心筋細胞のエネルギー産生能を反映しているのかもしれないが、今後、更に、細胞画分中のATP濃度を測定するなどの検討が必要である。

鶏胚由来の心筋細胞をL-カルニチン添加培地で培養した今回の実験では、培地へのL-カルニチン添加が培養心筋細胞のATP産生に影響する可能性が示唆されたが、培養心筋細胞の自動的拍動の持続性、カルニチンおよび遊離脂肪酸の取り込みに及ぼす影響は認められなかった。Nishidaは新生ラットの培養肝細胞を用いた実験でATPの産生がカルニチンを添加することで増加することを報告しているが、この場合には、L-カルニチンとともに乳酸塩とオレイン酸塩の両方、あるいはどちらを培養液中に添加することが必要である。今後は、培地へのカルニチン添加とともに脂肪酸を添加した培養系で心筋細胞の脂質代謝について検討することが必要であるろう。

4. 要 約

L-カルニチン添加が培養心筋細胞の脂質代謝に及ぼす影響について調べるために、L-カルニチン1mMを添加した無血清培地で36時間培養を行い、心筋細胞の拍動持続性、培養上清中のカルニチン含量、遊離脂肪酸濃度およびATP濃度を測定した。培地へのL-カルニチン添加が培養心筋細胞のATP産生に影響する可能性が示唆されたが、培養心筋細胞の自動的拍動の持続性、カルニチンおよび遊離脂肪酸の取り込みに及ぼす影響は認められなかった。
文献
カルニチン投与によるラットの脂質代謝およびそのmRNAへの影響について

Effect of L-carnitine on Lipid Metabolism and the mRNA Levels in Rats

福島 道広・島田 謙一郎・中野 益男・*若松 純一
（帯広畜産大学，*伊藤ハム株式会社中央研究所）

Michihiro Fukushima, Ken-ichiro Shimada, Masuo Nakano and *Jun-ichi Wakamatsu
(Obihiro University of Agriculture and Veterinary Medicine and *Central Research Institute of Itoham Foods Inc.)

The aim of this study was to investigate the effects of L-carnitine on lipid metabolism in rats fed with different diets. Four different groups were investigated: basal diet (Exp. 1), basal diet supplemented with L-carnitine at 10 g/kg diets (Exp. 1), low lysine-methionine diet (Exp. 2), and low lysine-methionine diet supplemented with L-carnitine at 10 g/kg diets (Exp. 2). The feeding period was 4 wk. There were no significant differences in liver weight, body weight gain and food intake among each diet. The body weight gain trends to decrease in rat fed basal diet supplemented with 1% L-carnitine. The serum lipid concentrations were not affected by the carnitine. The serum carnitine (free, acyl, and total) concentration all increased significantly with added 1% L-carnitine diet. There was no significant difference in hepatic carnitine concentration among all groups except for the control group in Exp. 1. The hepatic carnitine concentration in the control group in Exp. 1 was lowest among 4 treatment groups. There was no significant difference in hepatic carnitine palmitoyl transferase-I mRNA level among the groups, but acyl-CoA oxidase mRNA levels tended to be higher in rat fed the carnitine.

1. 目的

L-カルニチンはミトコンドリア内膜に長鎖脂肪酸を輸送する担体として重要な役割を果たしている1)。ミトコンドリア内膜へ輸送された長鎖アシル基は、β酸化を経て、TCA回路でエネルギーへ変換される。しかし、カルニチンが欠乏すると、長鎖アシルCoAがエネルギーへ変換されないように、トリグリセリドの合成などの反応がミトコンドリア周辺で局部的に起き、異常な脂肪の蓄積が生じる2-4)。このようなL-カルニチンは体内における脂肪酸代謝と密接に関係している。一般に、カルニチンは肝臓や腎臓でリジン・メチオニンから生合成され5), 牛肉などの畜肉あるいは畜肉製品に多く含まれている6)。しかし、生合成される量だけでは不足するため、食事から摂取する必要があると言われている。こうした体内におけるカルニチンの機能から、カルニチン投与による高脂血症などの治療薬としての効果を調べるための様々な研究が行われているが7-9)、そのほとんどが血清中の各種脂質やリポタンパク質の化学組成等の段階に留められており、その効果ある
234 食肉に関する助成研究調査成果報告書

いは低減させる詳細な機構については、まだ不明な部分が多い。もし、L－カルニチンの投与効果やその機構が明らかになれば、ダイエット食品など様々な利用法が考えられる。そこで、本研究では、若齢ラットを用いて正常食群とL－カルニチンの生合成に関わるリジン・メチオニンを正常食群に比べてリジンとメチオニンの含量を少なくした低リジン・メチオニン食群に分けて、それぞれ1％L－カルニチンを投与した際に、血清中の各種脂質および各種カルニチン、肝臓中の総脂質および総コレステロール、肝臓における脂質代謝に関わる酵素のmRNAの発現量を調べた。

2. 材料と方法

2.1 実験動物および飼料

7週齢Fisher系雄ラット（F 344/Jcl）は日本チャールズリバー㈱から購入した。すべてのラットは12時間明暗周期、室温23±1℃、湿度60±5％条件下で、生体内でのL－カルニチンの動態、脂質成分に及ぼす影響を調べるために、正常食（実験1）と低リジン・メチオニン食（実験2）で飼育した（Table1）。飼料および水は自由摂取とした。ラットの取り扱いは、Guide for the care and Use of Laboratory10）に準拠した。いずれの実験も１％L－カルニチン投与群と基準食群に分け、各投与区とも5匹にし、4週間の投与試験を行った。

2.2 試料の調製

糞便は投与最終日に2日以内のものをすべて採取した。血液は絶食させたラットの顕静脈から毎週採血した。肝臓は最終日に摘出し、氷冷生理食塩水で洗浄後、重量を測定した。

2.3 化学分析

血清中の総コレステロール、HDLコレステロール、トリプトファンリン脂質、リジン含量、遊離カルニチンおよび総カルニチン濃度は酵素法にて測定された。総コレステロール濃度とHDLコレステロール濃度の差を超低密度リポタンパクコレステロール＋中密度リポタンパクコレステロール＋低密度リポタンパクコレステロール濃度とした。総カルニチン濃度から遊離カルニチン濃度を差し引いた濃度をアシルカルニチン濃度とした。

肝臓中の全脂質はFolchらの方法11）により抽出された。肝臓の中性ステロールはアセチル化後、GLCにより分析された。肝臓における遊離カルニチンは、Marquis & Fritzの方法12）に基づいた昨年の我々の報告13）に従って、分析を行った。

<table>
<thead>
<tr>
<th>Table 1 Composition of experimental diets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Casein</td>
</tr>
<tr>
<td>Amino acid mix*</td>
</tr>
<tr>
<td>Corn oil</td>
</tr>
<tr>
<td>Vitamin mix (AIN-76)</td>
</tr>
<tr>
<td>Mineral mix (AIN-76)</td>
</tr>
<tr>
<td>Choline chloride</td>
</tr>
<tr>
<td>Cellulose powder</td>
</tr>
<tr>
<td>Sucrose</td>
</tr>
<tr>
<td>L-Carnitine</td>
</tr>
</tbody>
</table>

*Amino acid mix: mixed casein components without lysine and methionine, and added 0.17% lysine and 0.07% methionine.
2.4 肝臓における脂質代謝関連タンパク質mRNAの逆転写 (RT), ポリメラーゼ連鎖反応 (PCR) およびサザンプロティングによる発現量の決定

ISOGEN (Nippon Gene) により肝臓の総 RNAは acid guanidium-phenol-chloroform 法で抽出した。総 RNAは、cDNA に逆転写後、PCR およびサザンプロティング法により定量した。

2.5 統計処理

得られたデータは平均と標準偏差で表し、群間の有意差検定は、Student’s t-test および Duncan's multiple-range test により、5%以下の危険率を有意とした。

3. 結果と考察

L-カルニチンの生体内における効果を調べるために、25%カゼイン食を基準にした正常食群と、L-カルニチンの生合成の基質となる必須アミノ酸のリジン・メチオニンを減らした際の低リジン・メチオニン食群を設定した。低リジン・メチオニン食群のアミノ酸混合物は、カゼインのアミノ酸組成におけるリジンとメチオニンの100%当たるの含量は7.04gおよび2.51gであるものを、それぞれ0.17g, 0.07gとして、他のアミノ酸量はカゼインと同じになるようにした。初期体重、体重増加量、食餌摂取量および肝臓重量を Table 2 に示した。正常食群では、対照区とカルニチン投与区の間にいずれの項目も有意な差はみられなかったが、体重増加量にカルニチン投与により減少する傾向が見られた。一方、低リジン・メチオニン食群では、食餌摂取量がカルニチン投与により対照区と比べ有意に低下し、かつ体重増加量でも同様にカルニチン投与で有意に減少していた。従って、低リジン・メチオニン食群で有意に体重増加量が減少した原因としては、食餌摂取量が減少したためとも考えられるが、正常食群において、体重増加量の減少傾向は、カルニチン投与のみの影響と言えるかもしれない。

総コレステロール、VLDL+IDL+LDLコレステロール、HDLコレステロール、トリグリセリッド、遊離脂肪酸およびリン脂質濃度に対する影響を投与 0, 1, 2 および 4 週目の血清で調べた (Table 3)。正常食群および低リジン・メチオニン食群のいずれの場合も、血清脂質におけるカルニチン投与による変化はみられなかった。一方、食餌の違いによる影響では、正常食では HDLコレステロール以外は、1 週目でほぼ最大濃度に達し、HDLコレステロールは徐々に増加する傾向を示したが、低リジン・メチオニン食群では、トリグリセリッド以外の項目では、2 週目で最大に達する傾向を示しており、正常食に比べ血清脂質の濃度上昇が遅延する傾向を示していた。また、トリグリセリッドだけは減少する傾向で、1 週目に最低値に達していると考えられた。Fig. 1 には、肝臓の総脂質および総コレステロールを示した。総脂質では、低リジン・メチオニン食群が正常食群に比べ有意に増加し、トリグリセリッドでも有意に減少した。

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Body weight, food intake and relative liver weights in rat fed dietary for 4 wk①.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Component</td>
<td>Basal diet</td>
</tr>
<tr>
<td></td>
<td>Control</td>
</tr>
<tr>
<td>Initial body weight, g</td>
<td>156.1±5.0</td>
</tr>
<tr>
<td>Body wt. gain, g/4 wk</td>
<td>65.1±6.0*</td>
</tr>
<tr>
<td>Food intake, g/4 wk</td>
<td>429.7±47.2*</td>
</tr>
<tr>
<td>Liver weight, g/100g body</td>
<td>4.22±0.19</td>
</tr>
</tbody>
</table>

① Values are expressed as means ± SD, n=5. Means within the same rows bearing different superscripts are significantly different (P<0.05).
* not significant.
Table 3 Serum total cholesterol, VLDL+IDL+LDL cholesterol, HDL cholesterol, triglyceride, free fatty acid and phospholipid concentrations in rat fed dietary for 4 wk¹.

<table>
<thead>
<tr>
<th>Index</th>
<th>Period (wk)</th>
<th>Basal diet</th>
<th>Low lysine-methionine diet</th>
<th>Two-way ANOVA (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Control</td>
<td>Carnitine</td>
<td>Control</td>
</tr>
<tr>
<td>Total cholesterol</td>
<td>0</td>
<td>1.43±0.15</td>
<td>1.58±0.12</td>
<td>1.48±0.15</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2.06±0.18²</td>
<td>2.24±0.24²</td>
<td>1.73±0.11²</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>2.29±0.38</td>
<td>2.38±0.28</td>
<td>2.30±0.11</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>2.39±0.20</td>
<td>2.40±0.29</td>
<td>2.29±0.31</td>
</tr>
<tr>
<td>VLDL+IDL+LDL cholesterol</td>
<td>0</td>
<td>0.31±0.04</td>
<td>0.34±0.06</td>
<td>0.28±0.05</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>0.74±0.02²</td>
<td>0.78±0.09²</td>
<td>0.50±0.06</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>0.83±0.15²</td>
<td>0.90±0.11²</td>
<td>0.68±0.03</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>0.80±0.11²</td>
<td>0.80±0.18²</td>
<td>0.59±0.09</td>
</tr>
<tr>
<td>HDL cholesterol</td>
<td>0</td>
<td>1.12±0.14</td>
<td>1.23±0.06</td>
<td>1.20±0.12</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.32±0.19³</td>
<td>1.45±0.16³</td>
<td>1.24±0.07³</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.46±0.25</td>
<td>1.48±0.23</td>
<td>1.62±0.09</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.58±0.14</td>
<td>1.60±0.23</td>
<td>1.70±0.22</td>
</tr>
<tr>
<td>Triglyceride</td>
<td>0</td>
<td>0.65±0.03</td>
<td>0.76±0.16</td>
<td>0.67±0.18</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.41±0.13³</td>
<td>1.51±0.41³</td>
<td>0.31±0.12</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.71±0.31³</td>
<td>1.65±0.32³</td>
<td>0.30±0.10</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.43±0.32³</td>
<td>1.48±0.37³</td>
<td>0.30±0.12</td>
</tr>
<tr>
<td>Free fatty acid</td>
<td>0</td>
<td>0.62±0.08³</td>
<td>0.60±0.07³</td>
<td>0.72±0.08</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.18±0.08³</td>
<td>1.18±0.11³</td>
<td>0.78±0.04</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.02±0.12³</td>
<td>1.11±0.13³</td>
<td>1.06±0.15</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.11±0.26³</td>
<td>1.12±0.19³</td>
<td>1.33±0.24³</td>
</tr>
<tr>
<td>Phospholipid</td>
<td>0</td>
<td>1.07±0.12</td>
<td>1.14±0.07</td>
<td>1.12±0.12</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>1.49±0.09³</td>
<td>1.60±0.16³</td>
<td>1.27±0.08</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>1.66±0.21</td>
<td>1.67±0.11</td>
<td>1.62±0.08</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>1.49±0.14</td>
<td>1.52±0.17</td>
<td>1.59±0.21</td>
</tr>
</tbody>
</table>

¹ Values are expressed as means ± SD, n=5. Means within the same rows bearing different superscripts are significantly different (P<0.05).

* not significant

Fig. 1 Effects of L-carnitine on total liver lipid (A) and cholesterol (B) concentrations in rat fed basal diets or low lysine–methionine diets for 4 wk. Control diet plus 1% L-carnitine (carnitine). Values are means±SEM for five animals in each experimental group. Means not associated a common superscript letter are significantly different (P<0.05).
Table 4 Serum free carnitine, acylcarnitine, total carnitine and liver free carnitine concentrations in rat fed dietary for 4 wk.

<table>
<thead>
<tr>
<th>Component</th>
<th>Basal diet</th>
<th>Low lysine-methionine diet</th>
<th>Two-way ANOVA (p value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Carnitine</td>
<td>Control</td>
</tr>
<tr>
<td>Serum free carnitine</td>
<td>64.06 ± 8.15a</td>
<td>171.74 ± 39.01a</td>
<td>72.10 ± 8.37a</td>
</tr>
<tr>
<td>acylcarnitine²</td>
<td>21.92 ± 3.08b</td>
<td>58.60 ± 11.13a</td>
<td>18.82 ± 3.38a</td>
</tr>
<tr>
<td>total carnitine</td>
<td>85.98 ± 11.06b</td>
<td>230.34 ± 49.02a</td>
<td>90.92 ± 10.60b</td>
</tr>
<tr>
<td>Liver free carnitine</td>
<td>0.52 ± 0.13b</td>
<td>2.60 ± 1.14a</td>
<td>2.35 ± 0.43a</td>
</tr>
</tbody>
</table>

1 Values are expressed as means ± SD, n=5. Means within the same rows bearing different superscripts are significantly different (P < 0.05).

2 The serum acylcarnitine concentration was calculated as follows; acylcarnitine = total carnitine - free carnitine.

* not significant

に比べて有意に減少していたが、カルニチン投与による違いはみられなかった（Fig. 1A）。一方、総コレステロールは食餌ならびにカルニチン投与による有意な差はなかったが、低リジン・メチオニン食群で増加する傾向はみられた（Fig. 1B）。

血清の遊離カルニチン、アシルカルニチンおよび総カルニチン濃度、および肝臓の遊離カルニチン濃度に及ぼす食餌ならびにカルニチン投与の影響を調べた（Table 4）。血清の遊離カルニチンおよびアシルカルニチン濃度は、正常食群において、カルニチン投与によりいずれも約2.7倍に増加し、有意に高い濃度を示した。一方、低リジン・メチオニン食群でも遊離カルニチンは約2.5倍にアシルカルニチンは2.5倍に有意に増加していた。しかし、カルニチン投与による増加率は、正常食に比べて小さく、一定ではなかった。さらに、遊離型/アシル型の比率は、正常食群では対照区が2.92倍、カルニチン投与区2.93倍とほぼ一定であるのに対し、低リジン・メチオニン食群では対照区3.83、カルニチン投与区3.06と一定でなかった。肝臓の遊離カルニチン濃度は正常食群でカルニチン投与により有意な増加がみられた。一方、低リジン・メチオニン食群ではカルニチン投与による増加傾向はあるが、有意な差はなかった。しかし、低リジン・メチオニン食群の対照区における遊離カルニチン濃度が正常食群のカルニチン投与区と同程度の濃度であるのは、食餌中のリジン・メチオニンが少なく、L-カルニチンの供給がないことから、体内におけるタンパク質から分解によりリジンとメチオニンが供給され、肝臓での合成が活発に行われたために、このような遊離カルニチンが高濃度になったのかもしれない。また、この影響により血清中のカルニチンにおける遊離型/アシル型の比率が一定に維持できなかったのかもしれない。

Fig. 2 には、肝臓における脂質代謝関連酵素として、アシルCoA オキシダーゼ（EC 1.3.3.6）とカルニチンパルミトイルトランスフェラーゼ I（EC 2.3.1.21）のmRNA発現量に及ぼす影響を示した。アシルCoA オキシダーゼの発現量は、正常食群の対照区86.29±29.6、カルニチン投与区91.80±46.4で、低リジン・メチオニン食群の対照区100.00±54.1、カルニチン投与区157.13±64.2であり、いずれもカルニチン投与により発現量は正常食群1.06倍、低リジン・メチオニン食群1.57倍に増加する傾向を示したが、有意な差はなかった（Fig. 2A）。また、カルニチンパルミトイルトランスフェラーゼ Iの発現量は、同様にカルニチン投与で僅かに増加傾向を示すものの、有意な差ではなかった（Fig. 2B）。アシルCoA オ
Fig. 2 Hepatic acyl-CoA oxidase mRNA (A) and carnitine palmitoyltransferase mRNA (B) concentrations in rat fed dietary for 4 wk. Each value represents the means ± SEM, n=5. Means not associated a common superscript letter are significantly different (P<0.05). The value of acyl-CoA oxidase mRNA and carnitine palmitoyltransferase mRNA was normalized to the value of GAPDH, and values for the rats fed the basal diet, the basal diet plus 1% carnitine and the low lysine-methionine diet plus 1% carnitine are expressed relative to the average values for rats fed the low lysine-methionine diet, which was set to 100.

4. 要 約

若齢ラットを使ったL-カルニチン投与による体重減少や血清脂質の濃度低下などに顕著な差を見いだすことはできなかった。しかし、投与したL-カルニチンは体内に取り込まれ、肝臓や血清中で濃度増加を及ぼしたこと、食餌中のリジン・メチオニンを少なくしても血清カルニチン濃度を恒常的に維持する働きがあること、体重増加率を減少させる傾向があること、β酸化が活発に動いている可能性など有用な情報が得られた。

文 献

免疫機能に対する運動強度と食事肉タンパク質の影響

Effects of Exercise Strength and Dietary Meat Protein on Immune Function

矢ヶ崎 一三（東京農工大学農学部）

Effect of exercise strength and dietary beef protein on immune function were studied in mice that were compelled to swim in a pool at 33-34°C. Tumor necrosis factor-α (TNF-α) concentration in serum of mice received lipopolysaccharide (LPS) injection was measured as an index of immune function. In untrained mice fed a basal 20% casein diet (20C) for 3 weeks, serum TNF-α concentration was notably decreased after swimming for 30, 60 and 120 minutes. In mice fed the 20C for 3 weeks and trained twice a week, the cytokine concentration in serum was also decreased after swimming for 15, 30, 60 and 120 minutes, but the concentration after swimming for 15 minutes was significantly higher than those after swimming for 30, 60 and 120 minutes. In trained mice, like untrained mice, feeding a 20% beef protein diet for 3 weeks, as compared with feeding a 20% casein diet, tended to increase serum TNF-α concentration in both the sedentary and exercised states. Serum concentration of corticosterone was strikingly increased after exhaustive exercise. This rise in corticosterone was canceled by beef protein ingestion when compared with casein ingestion. Addition to culture medium of serum from mice exercised exhaustively suppressed TNF-α production in cultured macrophages, suggesting existence of some factor(s) in serum that might inhibit TNF-α production. However, corticosterone seems to be ruled out as such a candidate.

1. 目的

代表的なサイトカインである腫瘍壊死因子α (TNF-α) は、抗腫瘍作用、抗ウィルス作用等を有するが、過剰に発現した場合には炎症や高脂血症を引き起こすのでその産生を沈静化する必要がある。一方、何らかの理由でサイトカイン産生能が低下する場合にはそれを阻止する必要がある。我々は、マウスを疲労懸案まで水泳させると、運動させないときにくらべて in vivo でのリポ多糖 (LPS) 反応性の TNF-α 産生能が著しく低下することを見いだした。この疲労懸案モデルを用いて食事タンパク質質の影響を検討したところ、牛肉タンパク質摂取マウスの運動後の血清 TNF-α 濃度は、カゼイン摂取マウスのそれに比べ高い傾向を示すことを見いだした。一方、安静（＝非運動）の場合、牛肉タンパク質摂取マウスの血清 TNF-α 濃度はカゼイン摂取マウスのそれに比べ明らかに上昇を示した。そこで本研究では、運動強度と TNF-α 産生能との関係および食事タンパク質質の影響とその機構の一端を検討することを目的とする。

2. 方法

2.1 動物と飼料

ICR 系雄マウス (Charles River Japan) を 8 週
Table 1 Composition of experimental diets (%)

<table>
<thead>
<tr>
<th>Ingredient</th>
<th>20C</th>
<th>20M</th>
</tr>
</thead>
<tbody>
<tr>
<td>Casein^a</td>
<td>20.0</td>
<td>-</td>
</tr>
<tr>
<td>Beef protein^b</td>
<td>-</td>
<td>20.0</td>
</tr>
<tr>
<td>Corn oil^c</td>
<td>5.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Sucrose^d</td>
<td>17.0</td>
<td>17.0</td>
</tr>
<tr>
<td>α-Corn starch^e</td>
<td>51.3</td>
<td>51.3</td>
</tr>
<tr>
<td>Mineral mixture (AIN−93)</td>
<td>3.5</td>
<td>3.5</td>
</tr>
<tr>
<td>Vitamin mixture (AIN−93)</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>Cellulose powder^f</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Choline bitartrate^g</td>
<td>0.2</td>
<td>0.2</td>
</tr>
</tbody>
</table>

a：Oriental Yeast Co., Tokyo.
b：Itoham Foods Inc., Central Research Institute, Ibaraki.
c：Mitsui sugar Co., Tokyo.
d：Hayashi Chemicals Co., Ltd., Tokyo.
e：Nihon Nosan Kogyo Co., Yokohama.
f：Wako Pure Chemical Industries, Ltd., Osaka.

齢で購入し、明期 8:00～20:00、室温 22℃、相対湿度 60%に調整された飼育室内で、固型飼料（CE-2, CLEA Japan）と水道水にて 1 週間予備的に個別飼育した。その後、必要に応じて平均体重が等しくなるようマウスを群分けし、Table 1 に示した基本食である20%ケサイン食（20C）あるいは実験食である20%牛肉タンパク質食（20M）を3 週間摂取させた。飼料と水は自由に与えた。飼育最終日に、必要に応じて体重が等しくなるように各群をさらに区分けした。

2.2 運動負荷（遊泳）法

直径 100cm、深さ 50cm の恒温水槽に、水深 43cm となるように温水を入れ、2つのエアーポンプで泡立たせた水温 33～34℃のプールを準備した。無負荷の場合には、中性洗剤で毛皮脂を洗い、種々の時間遊泳させた。また負荷を与える場合は、体重の 4% のおもりを尾につけるプールで疲労回復（水面下に 7 秒間沈んだ時点）まで遊泳させた。

2.3 血清の採取と血清 TNF-α 濃度の測定

マウスリポ多糖（LPS）を腹腔内注射し、90分後にと殺し、頸部から採血した。2 時間後に遠心して血清を分離し、TNF-α 濃度の測定まで

-85℃で保存した。血清中の TNF-α 活性を、マウス L929 細胞を細胞殺作用の標的細胞として用いるバイオアッセイ法で測定した2, 3)。

2.4 腹腔マクロファージの採取とマウス血清の TNF-α 産生能に及ぼす影響

マウスをと殺し頸部から採血した。2 時間以内に遠心して血清を分離した。と殺直後のマウス腹腔内に、抗生物質を含む RPMI 1640 培地（日本製薬）10mL を注射筒で注入し洗浄することによって常在性腹腔マクロファージを採取した。なお、培地調製の際にはエンドトキシンフリーやの注射用水（光製薬）を用いた。遠心して得られたマクロファージを10%胎児血清（FBS）を含む培地（10% FBS/RPMI 1640）に懸濁し、24穴平底プレートに 2×10^6 細胞/穴となるよう播種し 2 時間培養してマクロファージを接着させた。接着細胞を洗浄により取り除き、10%マウス血清を含む RPMI 1640 培地中、LPS 存在下でさらに 3 時間培養し、培養上清を採取し TNF-α 産生能の測定まで -85℃で保存した。別に測定したマクロファージの DNA 量を除すことにより単位 DNA 量当たりの TNF-α 量を算出し、TNF-α 産生能とした2, 3)。

2.5 血清コルチコステロン濃度の測定

Corticosterone RIA Kit (ICN; USA) を用いた radioimmunoassay により測定した。

2.6 統計処理

結果は平均値 ± 標準誤差で表した。群間の平均値の有意差検定は Student's t-test または Tukey-Kramer multiple comparisons test で行った。

3. 結果と考察

まず、基本食である20C 食を摂取させ、運動トレーニングをまったく行わなかったマウスに種々の時間一過性運動を行わせ、LPS 腹腔内投与90分後の血清 TNF-α 濃度を測定した。安静
Fig. 1 Effect of exercise time on serum TNF-α concentration in trained mice after LPS challenge. Each value represents the mean±SEM for 7 (S) or 6 (others) mice. Mice were intraperitoneally injected with LPS at a dose of 3 μg/g body weight and their blood was collected 90 minutes later. Values not sharing a common letter are significantly different at P<0.05 by Tukey-Kramer multiple comparisons test. † P<0.05 compared with E15 value by Student’s t-test.

Fig. 2 Effects of exercise and dietary proteins on serum TNF-α concentration after LPS challenge in trained mice fed either a 20% casein diet (C) or 20% beef protein diet (M). Each value represents the mean±SEM for 9 (C of sedentary state), 8 (M of sedentary and exercised states) or 7 (C of exercised state) mice. Mice were intraperitoneally injected with LPS at a dose of 3μg/g body weight and their blood was collected 90 minutes later. † P<0.05 compared with corresponding sedentary values by Student’s t-test.
運動を行わせたマウスの遊泳持久力は、有意で
はないものの20C摂取群に比べ20M摂取群が延
長した（3406秒 vs. 3866秒）。ストレスホルモン
の一つであるコルチコステロンの血清中濃度は、
安静時に比べ活動後には9倍（カゼイン摂取時）
あるいは6倍（牛肉タンパク質摂取時）にまで上
昇することが明らかとなった（Fig. 3）。しかし、
その上昇程度は牛肉タンパク質摂取群のほうが低
く、運動後ではカゼインに比べ牛肉タンパク質が
血清コルチコステロンの上昇を有意に抑制した。
すなわち、牛肉タンパク質摂取はストレス抑制的
な内分野状態にすることが示唆された。このような
状態のマウス血清を、安静時マウスから採取し
たマクロファージに作用させたところ、その
TNF-α産生能は運動マウス由来血清にしろ血清
血清コルチコステロンの上昇を有意に抑制した。
これ
は、in vivoでのLPSへのTNF-α反応性（Fig. 2）
の成績とよく一致する興味深い結果である。
すなわち、疲労回復マウスの血清にはマクロファ
ージのTNF-α産生能を抑制する因子が含まれ
ていることを意味している。完全には否定できない
ものの、血清コルチコステロンレベル（Fig. 3）
とTNF-α産生能（Fig. 4）が相補的でないこと
から、コルチコステロンがそのような因子であること
可能性は低いと考えられる。別の要因としてアドレ
ナリンが考えられる。今後の検討課題であろう。

安静時のLPSに対する血清TNF-α反応性は、
カゼインに比べ牛肉タンパク質摂取で有意に上昇
することが既に認められている11。今回の遊泳ト
レーニングを受けたマウスでの成績（Fig. 2）も
ほぼ同様であった。運動後でもカゼイン摂取に比
べ牛肉タンパク質摂取で上昇の様相を呈し、牛肉
タンパク質摂取が運動後の生体防御機能を改善す
ることが示唆された。これは安静時に貯えられた
牛肉タンパク質の生体防御能賦活作用が運動後に
も持続し発揮されているからと考えられる。

LPSを腹腔内投与したときに血中に出現する
TNF-αの主な産生源は肝臓のKupffer細胞で
あると言われている40。従って、肝臓のマクロフ

Fig. 4 Effect of serum from sedentary and post-exercised mice fed either a casein or beef protein diet on TNF-α production by resident peritoneal macrophages.
Each value represents the mean±SEM for 10 (sedentary state) or 9 (exercised state) mice. †P<0.05 compared with corresponding seden-
tary values by Student’s t-test.

Fig. 3 Effects of exercise and dietary proteins on serum corticosterone concentration in seden-
tary and exhaustively exercised mice.
Each value represents the mean±SEM for 10 mice. †P<0.05 compared with corresponding sedentary values by Student’s t-test. *P<0.05 compared with the C group in the exercised state by Student’s t-test.
4. 要約

(1) 水泳直後のマウスにリポ多糖を腹腔内注射して90分後の血清を得，in vivo での TNF-α 産生の指標としての血清 TNF-α 濃度を測定し，この指標に及ぼす運動強度と食事タンパク質源の影響を検討するのが目的である。

(2) マウスに種々の時間一過性運動を行わせ，LPS 腹腔内投与90分後の血清 TNF-α 濃度を測定した。安静時と比べ，運動30，60，120分後の血清 TNF-α 濃度はいずれも有意に低下した。異なる時間遊泳した群間では有意な変化は認められなかった。

(3) 1日15分，週2回の合計6回の運動トレーニングを行なったマウスを用いて，最終日に15分，30分，60分，120分間運動させ，血清 TNF-α 濃度を測定した。その結果，安静時と比べすべての運動群の値は有意に低下した。しかし，運動15分群は他のいずれの運動群よりも有意高い値を示した。

(4) 20％カゼイン食または20％牛肉タンパク質食を3週間摂取させつつ，運動トレーニングを行なったラットを最終日に無負荷で15分間遊泳させ，血清 TNF-α 濃度を測定した。その結果，食事タンパク質源により運動時では安静時に比べ LPS への血清 TNF-α 反応が有意に低下すること，安静時と運動後ともに牛肉タンパク質食摂取により血清 TNF-α の LPS への反応性が高まる様相を呈することが認められた。

(5) LPS への血清 TNF-α 反応性に影響する要因を，疲労困憊ラットを用いて探ることを試みた。ストレスホルモンの一つであるコルチコステロンの血清中濃度は，安静時に比べ運動後には6 ～ 9倍にまで上昇することが明らかとなった。しかし，その上昇程度は牛肉タンパク質摂取群のほうが低く，運動後ではカゼインに比べ牛肉タンパク質が血清コルチコステロンの上昇を有意に抑制した。

(6) このような状態のマウス血清を，安静時マウスから採取したマクロファージに作用させたところ，その TNF-α 産生能は運動マウス由来血清により著しく低下することが明らかとなった。血清コルチコステロンレベルと TNF-α 産生能が相補的でないことから，コルチコステロンが TNF-α 産生を抑制する因子である可能性は低いと考えられた。

文献
1) 矢ヶ崎一三，食肉に関する助成研究調査成果報告書，18，309-313 (2000)
The purpose of this study is to investigate whether carnitine administration accelerates the fat oxidation during ultra-endurance running. The subjects were well-trained ultra-endurance runners, 4 male and 2 female. They are international level runners. They took 200 mg carnitine or placebo per day during a week and crossed-over by double blind test method. One week after taking it they run 100 km in own pace, but they are requested to show same performance in each 100 km running. After 12 hours fasting they arrived at our laboratory and blood were taken. And then they took a standard breakfast. When they finished their own warming-up exercise, they started. During 100 km running blood were drawn at 50 km, 80 km, and 100 km. In recovery period 10 min and 60 min after running blood were drawn. They were allowed to take any kinds of foods and drinks which were prepared in 100 km running.

Blood components measured were lipid metabolites, such as free fatty acids, triacylglycerol, glycerol, etc., catecholamine, insulin, glucose, and some nitrogen compounds.

In a first trial all subjects run 100 km in 8 hours 53 min 13 sec to 14 hours 20 min 13 sec. And second trial five subjects run 100 km in 8 hours 47 min 19 sec to 11 hours 31 min 25 sec. One subject could not finish 100 km and was forced to stop running at 80 km, because of much snowing. No differences were observed between first and second 100 km running time in 5 subjects. Therefore it is possible to compare the changes in blood components between carnitine and placebo administration.

Serum free fatty acids (FFA) are most sensitive indicator of fat oxidation. FFA increased progressively during 100 km running and 10 min after 100 km running showed the highest values. The values of 60 min after 100 km running were higher than rest values. There were no differences between carnitine and placebo administration. Triacylglycerol, glycerol, and ketone bodies during and after 100 km running showed almost similar changes to FFA. There also are no differences between carnitine and placebo administration. Catecholamine increased during 100 km running, but, no differences were observed in carnitine and placebo administration. Insulin showed small changes in both.

These data demonstrated that 100 km running accelerated lipid metabolism during exercise and carnitine administration had no specific effects on fat oxidation.
イバパワー系、ATP-CP系や解糖系（ミドルパワー系、乳酸系）がそうであり、短時間の運動時間しか貢献できない。前者は約7秒以内であり、後者は約40秒足らずである。後者では筋肉内のグリコーゲンのみが関与する。一方、持久的な運動となると酸化系（ローパワー系、TCA回路系）が主役となり、多くの基質を代謝してATP補充をはかるので長時間に渡るエネルギー供給を可能とする。中心的な基質とは脂肪酸であるが、身体に多数に存在する脂肪酸を酸化するためにはグリコーゲンが不可欠であり、それが限界因子となり得るものである。

持久的な運動の場合、特に超長距離走（通常50kmを越える距離を時間を伴う）のような運動では身体が保有するエネルギーだけでは到底不足し、運動中の補給が極めて重要である。水分摂取とともにエネルギーの補給には、即効的効果が期待される物質が有効である。走行中に効果が得られないのはまったく無意味である。

即効的な効果として期待されるためには、筋グリコーゲン量の節約に係わること、脂質の酸化関量の増加に係わること、血糖値の維持に係わること、等が挙げられる。脂質は生体内に多量に保有されているから、この補給は考えなくても良い。すると糖質補給が中心となるも、インスリンの作用は脂質の酸化に抑制的であるため、その作用が弱い果糖の利用が奨められる。

一方、三大栄養素による補給と言う考え方の他に、代謝を促進するための物質を補給するという考え方がある。エルゴゲニック・エイドと呼ばれる一連の物質群がそれである。これらは機能性物質であるから必ずしも効果が認められるとは限らない性質のものであるが、利用の仕方によっては有効な場合がある。プラセボ効果も含めて、スポーツ実践の中で科学的な有効性が確認されていないものでも、選手にとっては効果があると信じられているものがあることは事実である。

今回、エルゴゲニック・エイドとしてその有効性が期待される、牛肉抽出成分としてのカルニチン1）～3）に着目して超持続的な運動時の脂質代謝に及ぼす影響からその効能について検討することとした。カルニチンに関するこれまでの研究が用いた運動と比較してかなり長い距離（100km）を採用したのは、脂質代謝がよく亢進すること、100kmという超長距離をコンスタントに走ることのできるランナー数多く確保できること、の2点である。しかもランナーとしてのレベルが国内外において優れていることも補助的な意味で含まれる。

2. 方法

2.1 対象者

本研究の対象者には100km走行に熟達し、2回の走行をほぼ同じように走ることのできる能力を有する、いわゆる「ウルトラランナー」6名（男4名・女2名）を用いた。彼らは国内外の超長距離レースで活躍のトップランナーであり、100kmはおそらく250kmレース（さくら道250km：名古屋～金沢、スパルタスロン：アテネ～スパルタ）、24時間走（24時間でどれくらいの距離を走ったかを競うレース）等を数多く実施し、かつ常に上位に位置している。

2.2 カルニチン投与方法

対象者はすべてコード化され、カルニチンかプラセボかコントローラーにより割り付けられ、二重盲検法でクロスオーバーした。カルニチンとプラセボは始め、同臭、同量のカプセルに入れ、1日に200mg（20mg入りカプセルで10個）、1週間摂取させた。

2.3 100km走プロトコル

カルニチンかプラセボを1週間摂取した翌日、12時間の絶食状態で研究室に来室させ、走前60分
血を行った。その後、朝用規定食をとり、個人毎にW-upをし、100km走行に入った。100km走行は1周1kmの未公認コースを100周とした。走行中の採血は、50km地点、80km地点、100km終了時、走後10分と60分の計5回とした。2回目の100kmトライアルは約1カ月の間隔をおいて行った。

100kmという超長距離を走るには走行中の水分摂取やエネルギー補給は不可欠であるので各対象者は周回中1カ所においてのみ自由に摂取が許された。その内容は、水、スポーツドリンク類、おにぎり、パン、バナナ、オレンジ等であった。

2.4 血液成分の測定項目

遊離脂肪酸、中性脂肪、グリセロール、ケトン体（3-オクタノール酸、アセト酢酸）、血糖、インスリン、カテコールアミン（3分画）、クレアチニン、クレアチニン、レチニン、尿酸、尿素窒素。

3．結果と考察

3.1 100kmの走行結果

対象者Aは、1回目8時間57分34秒、2回目8時間50分47秒、対象者Bは、9時間41分58秒と10時間17分00秒、対象者Cは、8時間53分13秒と8時間47分19秒、対象者Dは、9時間12分14秒と9時間28分07秒、対象者Eは、9時間24分40秒と11時間31分25秒、対象者Fは、14時間20分13秒と15時間51分53秒であった。ただし、対象者Fの2回目（15時間51分53秒は大雪の中のあるもので80km走行したものである）は100kmに満たないところを打ち切ったものである。従って、これを除く5名の2回の100km走行間を比較したところ、平均値において統計的に有意な差が認められなかったので、2回の100km走行はほぼ同じ走行内容と言うことができ、血液成分の測定結果の比較は可能と言える。

次にこの5名についてカルニチン投与群（C

Fig. 1 Comparison between carnitine (Ca) and Placebo (PL) administration in Free Fatty Acids (FFA) concentration before, during and after 100km running
群）とプラセボ群（P群）とで比較しmeetみると、
平均値で9時間38分6秒、9時間44分11秒と差が
認められない。

3.2 脂質代謝関連項目
運動時の脂質代謝に関してその動態を最もよく
反映する血清中の遊離脂肪酸についてC群とP群
の平均値を比較したのがFig.1である。両群とも
走行前から走行中に増加し、100km終了後10分
で最大値を示した。1時間後の値は100km終了
時の値に低下したまで走行前値に至らなかった。両群間の差をみるとP群が80km地点
でやや高くなってしまい、100km終了後10分で
はさらに高い値を示しているもののどちらも有意
な差には至っていない。また、中性脂肪はFig.2
に示したが、走前の値から漸次減少傾向を示し、
100km終了後の値のまま1時間後もそのままで
あった。両群間ともまったく同じ傾向を示し、両
群間には差は認められなかった。さらに、Fig.3
にグリセロールの推移を示した。両群とも走行か
ら走行に伴い上昇し続け、走後漸次低下した。両
群間ともまったく同じ傾向で差が認められなかっ
た。ケトン体を総ケトン体値から評価したところ、
100km走行中は走行値と変わらず変化が乏しい
が、走後に若干増加傾向を示したのみで、両群間
に差は認められなかった。糖代謝異常は認められ
ず、従って脂質代謝がATP補充系の役割を単純
に果たしていることを示している。
以上の結果から100km走行において脂質代謝
が著明に亢進したことが明らかであり、しかも、
C群とP群とも同じような傾向を示したことから
カルニチン投与が100km走行時において脂質代
謝に及ぼした特異的な影響は認められない。
100km走行時のホルモン動態から見ると、両
群ともカテコールアミン（アドレナリン、ノルア
ドレナリン、ドーパミン）はいずれも走前から
100km走行中に増加し、走後に減少したが、走
前までに回復は認められなかった。両群間での差
は、アドレナリンの100km終了後の値のみで、

Changes in TG

Fig. 2 Comparison between carnitine (Ca) and Placebo (PL) administration in Triacylglycerol (TG) concentration before, during and after 100km running
Fig. 3 Comparison between carnitine (Ca) and Placebo (PL) administration in glycerol concentration before, during and after 100km running

大きな結果を示した。しかし、これとても統計的には有意な差があるとは言えなかった。インスリンは走前、100km走行中、走後を通じて大きな変化は示さなかった。こうした反応からすると100km走行は脂質代謝が亢進したことを裏付けるものであるが、走行中の飲食による脂質代謝への影響はまったく認められなかった。

3.2 他の代謝関連項目

糖質輸送100〜120mg/dLを推移しており、100km走行に伴う変化は両群とも認められなかった。クレアチニン、尿酸、尿素窒素のタンパク関連物質も大きな変化は認められず、100km走行による生体負担は両群すべてにおいて問題となる代謝は生じていなかったことと言える。

運動時の骨格筋へのダメージを示す血清酵素クレアチニン・キナーゼにおいて両群とも大きな変化を示さず、100kmという超長距離走が及ぼす影響は2回のトライアルでも大差ないということになる。また、クレアチニン・キナーゼには今回のような2回のトライアル（100km走）のような場合、1回目から2回目までにおける累積の効果はよく観察され、2回目の方が反応性が低下する傾向にあるが、C群とP群との差は確認されなかった。

3.4 カルニチン投与の効果

以上のようにほぼ同じ条件で100kmを走る場合、脂質代謝関連物質の血中での動態を見る限り、カルニチン投与による特異的な影響は観察されなかった。これまでの報告とはまったく異なる運動時間に反応せず差が認められなかったのは、100kmを走るという条件が脂質代謝を最大に活性化しなければならないはずだが、その際活性化されたFFAがミトコンドリア内に入る段階が律速段階ととなっていることを意味している。

今回は2回のトライアルを同じ条件で走ることとしたため、カルニチン投与がパフォーマンスを高めるかどうかについてはまったく考慮されていない。短時間当たりのFFA酸化効率に及ぼす
カルニチン投与の影響については今後の課題である。

4. 要約

経口的にカルニチンを1日200mg、1週間でわたって投与し、100kmを各自のペースで走行させ、走行中および後に採血して脂質代謝関連物質の動態を観察した。対象はプラセボとし、クロスオーバー、二重盲検法によって検討した。被験者は100km走行に対して十分熟達したウルトラランナー6名（男4名、女2名）を用いた。その結果、脂質代謝亢進の指標としての遊離脂肪酸は走行中増加し、走後10分で最大値を示した。この動態はカルニチンおよびプラセボ群で同様であった。中性脂肪、グリセロールなどの指標も両群間に差が認められず、カルニチン投与の特異的な影響は認められなかった。

文 献
2) Arenas, J. et al., FEBS Letters, 34:91～93, 1994
脳卒中易発症高血圧ラットを用いた食肉の高血圧に与える影響に関する基礎的研究

Effect of Meat on Blood Pressure and Stroke in Stroke-prone Spontaneously Hypertensive Rats

家 森 幸 男（京都大学大学院人間環境学研究科）

Our epidemiological results provide important evidence that adequate animal protein intake may have a favorable effect on blood pressure. In the present study we examined the effect of meat on hypertension and stroke in SHRSP. 1) Male SHRSP at 5 weeks of age were separated into three groups: a plain laboratory diet (PL) group (C), groups receiving the PL diet substituted with 10% of pork (P group) or 10% of beef (B group). The elevation of blood pressure was attenuated in P group compared to the control at the 8th weeks after administration. Along term feeding with pork meat retarded the development of stroke and death rate. 2) Hypotensive activity of 3-methylhistidine (a marker of animal protein intake) was evaluated by measuring blood pressure for 5 hours after oral administration of 800 and 1600mg of 3-methylhistidine per kg of body weight by a telemetry system. A single dose of 1600 mg/kg reduced systolic blood pressure. Pork meat may contribute to the development of hypertension and stroke in SHRSP.

1. 目的

現在、我が国における死亡数、患者数、医療費をあわせてみてがん、心疾患、脳血管疾患といった生活習慣病がそのほとんどを占めている。死因順位を見てみると、1998年の男性では1位 悪性新生物、2位 心疾患、3位 脳血管疾患が、女性では1位 悪性新生物、2位 脳血管疾患、3位 心疾患であった。翌年、1999年は男性で1位 悪性新生物、2位 心疾患、3位 脳血管疾患と前年に同様である。一方、女性においては1位 前年同様悪性新生物だったが、2位 脳血管疾患、3位 心疾患と脳血管疾患が増加していた。この三大死因のうち2つ、心疾患と脳血管疾患につながる最も重要な危険因子が高血圧症である。

高血圧症を含む高血圧性疾患は、1997年の時点では総患者数の27％（男性23％、女性29％）を占めている1）。また、高血圧症は加齢とともに増加し、65歳以上の高齢者では約60％が罹患していると報告されており、およそ3人中2人が軽症高血圧あるいは高血圧患者であると言われている2)。このような循環器系の疾患が国民医療費に占める割合は、65歳未満は13％であるのに対し、65歳以上では34％と全体のおよそ3分の1であり3)、高血圧疾患は最も罹患率が高く、その早期治療および予防が必要な重要視されている疾患である。

ヒト高血圧のうち90％以上は今日もなお原因不明の本態性高血圧であり、その他に、原因が明ら
かな疾患に起因して高血圧を生じた二次性高血圧疾患が存在する。本態性高血圧は、食塩感受性などの遺伝的素因に食塩の過剰摂取や肥満やアルコール過剰摂取、運動不足、ストレスなどの環境因子が関与することにより発症する。多くの因子が作用している疾患である。これら高血圧症の治療法には食事療法、生活指導、薬物療法があるが、重要のは食事療法である。高血圧症は遺伝的素因と環境因子に大きく左右され、環境因子の中で栄養が与える影響は大きく、そのコントロールによって予防が可能であると考えられている。これまでに多くの調査研究がなされており、塩分摂取の制限やω-3系の不飽和脂肪酸の摂取が高血圧症に対して有効であることが報告されている。また、タンパク質の摂取も高血圧症および高血圧疾患予防に効果があるという報告がある。タンパク質のうち植物性のものは大豆タンパク分解物が、動物性のものは魚介類のタウリンが血圧を下げ、高血圧疾患発症を抑制することがこれまでの研究で示唆されている。

WHO国際共同研究センターでは、1983年から循環器疾病と栄養との関係について世界25カ国60地域において学術調査を実施している。2000年、同センターにより中国で実施された調査は循環器疾病と栄養国際共同研究の一部として報告されており、中国の4カ所（貴陽、広州、上海、石家荘）において各地域それぞれ48～56歳の男性100人、女性100人（総計男性400人、女性400人）の調査結果では、ナトリウムと血圧は相関関係、3-メチルヒスチジンと血圧は逆相関関係が明らかにされた。一般に、より高いナトリウムレベルとより低い3-メチルヒスチジンレベルの被験者はより高い平均の収縮期血圧（systolic blood pressure：SBP）および拡張期血圧（diastolic blood pressure：DBP）を示し、食塩摂取の削減は高血圧のコントロールにおいて有効であるというWHOの勧告を支える結論となった。そしてまた、十分な動物性タンパク質の摂取が血圧に好ましい効果を及ぼすことが示唆された。本報告では動物性タンパク質の摂取が食塩摂取とは独立した要因で血圧に影響を及ぼしていると考えられた。

これらの結果より動物性タンパク質自身には血圧を下げる効果がある可能性が示唆された。動物性タンパク質には主に魚と肉があるが魚に関してはタウリンが高血圧症に有効であるという結果が得られており、研究も多くなされているが、動物性タンパク質、特に肉の摂取による血圧への影響は明らかにされていない。そこで本研究ではモデル動物を用いて食肉の高血圧への関与を検討した。

2. 方 法

2.1 実験動物

本研究では、実験動物として脳卒中易発性自然発症高血圧ラット（stroke-prone spontaneously hypertensive rat：SHRSP）を用いた。SHRSPは1963年、岡本と青木によって高血圧自然発症を指標とした選択的兄弟交配により成立した高血圧自然発症ラット（spontaneously hypertensive rat：SHR）由来のモデル動物である。SHRは現在、ヒトの本態性高血圧モデルとして世界中で広く用いられているが、このSHRを選択交配して脳卒中を多発する系統として分離し、1974年、家森らによって開発されたヒトの脳卒中モデルが今回使用したSHRSPである7。SHRSPは加齢に伴って220mmHg以上の危篤な高血圧を発症し、およそ6カ月で脳卒中を発症して1年以内にほぼ全例が死亡するというユニークなモデル動物である。症状としては、高血圧性脳症、興奮、凶暴発作、周期性自動運動や麻痺、尿失禁がみられ、やがて昏睡や大発作を起こして死に至る8。
2.2 動物性タンパク質食品投与による血圧変化

実験動物：雄性 SHRSP（ SHR 等疾患モデル 共同利用委員会）を18匹用いた。SHRSP を1週間実験環境に慣らし、5週齢から実験を開始した。

慣らし期間は標準飼料（飼料用 SP、船橋農場製）と水で飼育した。得られた測定値を元にして、3 群（1 群あたり6匹）に分けた。各群の血圧の平均値が同じになるように、かつ、群間で各 SHRSP の血圧が同分散を持つように組み合わせた。

血圧測定：血圧を Tail-cuff 法（AUTOMATIC MONITORING SYSTEM UR-500, UEDA, JAPAN）により測定した。測定は3回行い、その SBP の平均値を測定値とした。

試料の調製：牛肉10％添加飼料と豚肉10％添加飼料を用意した。コントロールは、食肉添加をカオリノン（和光純薬工業株式会社製）に置き換えカオリノン10％添加飼料とした。各試料は、標準試料にそれぞれ飼料用牛肉粉末、飼料用豚肉粉末（ともに伊藤ハム製）、カオリノンを10％添加してミキサーで均一に約10分間混合した。

試料の投与：各試料は、SHRSP に任意に摂取させた。また、も同様に与え、自然死するまで行った。群别は以下のようである。コントロール群（n＝6）：カオリノン10％添加標準飼料、牛肉投与群（n＝6）：牛肉粉末10％添加標準飼料、豚肉投与群（n＝5）：豚肉粉末10％添加標準飼料。

統計処理：血圧変化の比較、各試料投与群とコントロール群間で分散分析（ANOVA）のFisher のPLSDによる検定を行った。生存分析は Kaplan-Meier 法で行った後、Logrank 検定で有意差の有無を検定した。また、50％生存を算出した。

2.3 3-メチルヒスチジン投与による血圧変化の測定

動物性タンパク質摂取のバイオマーカーである
3-メチルヒスチジンを SHRSP に経口投与し、
血圧に与える影響をテレメトリー法を用いて調べた9-11）。3-メチルヒスチジンは動物性タンパク質摂取のバイオマーカーとして用いられている。

3-メチルヒスチジンは筋肉のアミノ酸とミオシンに含まれていることが1976年、Asatool と Armstrong によって発見された。3-メチルヒスチジンは投与後、75％が24時間で尿中に排泄され、95％が48時間で排泄される。また、投与後最初の8時間は分解されないことが、1975年に C.L. Long らによって報告されている12）。

3-メチルヒスチジンは L-ヒスチジンメチルエステルを N, N'-カルボンヨウ素ジアゾール反応させてアミノ塩とイミダゾール環の1位の窒素原子を保護しておき、ヨウ化メチルで3位の窒素原子を選択的にメチル化した後に、酸性条件下で加水分解して脱保護して合成した。

試料の投与および血圧測定：血圧送信器を留置した SHRSP をテレメトリーの受信機から下ろし、5分間程度放置して安定させた。その後、各 SHRSP に試料を1mlずつゾンテを用いて胃に直接経口投与して、再びおよそ5分間放置し安定させた。SHRSP を受信機の上に戻し、テレメトリー（Dataquest, Data Sciences International, USA）により5分ごとに血圧の経時変化を観察した。実験の間、SHRSP には標準飼料と水を与え、実験前と同じ条件で飼育した。

実験後、コントロールとして同量の水を投与した群の血圧と3-メチルヒスチジン 800mg/kg および1600mg/kg 投与後の血圧を比較検討した。

コントロール群（n＝2）：標準飼料＋水／1ml, 800mg/kg 投与群（n＝2）：標準飼料＋水／3-メチルヒスチジン 200mg/ml, 1600mg/kg 投与群（n＝2）：標準飼料＋水／3-メチルヒスチジン 400mg/ml
3. 結果と考察

3.1 動物性タンパク質食品投与による血圧変化

投与後6週目までは各群ともほぼ同じベースで血圧が上昇した。投与後6週目からは安定期に入り、各群の間に差がみられ始めた。豚肉投与群において、投与後8週目にコントロール群と比較したところ有意に血圧の降下が見られた（p<0.05）。牛肉投与群とコントロール群間において、有意な差はみられなかった。実験期間中の各食品投与群の試料摂取量は、特に変化は認められなかった。豚肉投与群において、他の2群に比べ、寿命が延びる傾向がみられた。各動物性タンパク質食品投与後の50％生存は、コントロール群が121日、牛肉投与群が140日、豚肉投与群が155日であった。

3.2 3-メチルヒスチンジン投与による血圧への影響

コントロール群と800mg/kg投与群を比較したところ、大きな変化はみられなかった。コントロール群と1600mg/kg投与群においては投与後30分以降血圧が降下し投与後80分までおよそ50分間降下し続け、最終的には174mmHgまで下がった。その効果は投与後290分まで、降圧効果が確認されてから約260分間維持された。これ以降は血圧が再び上昇し、常態に戻った。

SHRSPへの動物性タンパク質食品投与による血圧変化は、豚肉投与群においては、投与後6週目にコントロール群に比べて有意な低下を認めたが、その後上昇して著明な血圧変化は認められなかった。しかし、生存曲線を見ると、有意差は認められなかったが、豚肉投与群の死亡時期が明らかに延長している。また、50％生存も豚肉投与群が他の2群よりも長く、牛肉に比べ豚肉の方が高血圧疾患予防に有効である可能性が示唆された。投与し
た各動物性タンパク質食品の一般成分を比較したところ、牛肉のタンパク質が豚肉よりおよそ10％少なく、動物性タンパク質の量が影響している可能性も考えられた。

3-メチルヒスチンジステニン投与実験では拡張期血圧において、1600mg/kg投与後1時間後に有意な降下がみられ、以後40分間降下が継続した。他の食品成分投与による降圧作用に関して、次のような報告がされている。1991年、杉山らはイワシ魚粉のアルカリプロテアーゼ分解物（2000mg/kg）をSHRに対して単回経口投与し6時間後ににおいても血圧降下作用の持続を確認している。関らは、SHRへのイワシタンパク質由来ベプチド単回経口投与では10mg/kg投与後4時間で有意に低下し、投与8時間経過後も拡張期血圧は回復しなかったと報告している。また、松井らはSHRに対してイワシ入り身のアルカリプロテアーゼ分解物20、40、80、200mg/kgを単回経口投与したところ、投与後3～5分で投与量に依存して明らかな血圧効果が認められたと報告している。3-メチルヒスチンジステニンの降圧作用に対する量的依存性や摂取回数投与による血圧変化などは今後の研究が必要と考えられる。

動物種間では有効成分の代謝挙動が異なり、ラットにおいてヒトと同等の効果を期待するには、薬品ではヒトの10～20倍程度、食品では60～90倍程度の高用量を要することが一般にいわれている。従って、3-メチルヒスチンジステニンは、ヒトにおいてはおよそ20～30mg/kgの摂取で降圧効果が期待できると示唆された。本実験では動物性タンパク質食品および3-メチルヒスチンジステニン投与による降圧作用は弱いものであったが、ヒトにおいても血圧降下作用が見られる可能性があると思われる。以上から、動物性タンパク質の摂取は血圧降下に対して有効である可能性があるものと考えられる。
4. 要約

我々の疫学研究の結果のうち、2000年に中国で行われた研究では動物性タンパク質の摂取が食塩摂取と独立した要因で血圧に変化を及ぼしたと考えられ、動物性タンパク質自身に血圧降下作用がある可能性が示唆された。そこで本研究では、
1) 脳卒中易発症自然発症高血圧ラット（SHRSP）に牛肉粉末および豚肉粉末を任意摂取させ血圧の変化、2) 動物性タンパク質摂取のバイオマーカー、3-メチルヒスチジンを SHRSP に単回経口投与して 3-メチルヒスチジン自体の血圧に対する影響を調べた。1) 投与後 8 週目の豚肉投与群とコントロール群間に有意差（p<0.05）が認められた。生存率においては、有意差は認められなかったが、豚肉投与群が他の 2 群と比較して延命する傾向がみられた。高血圧疾患予防にて豚肉は牛肉よりも比較的効果が高いことが示唆された。2) 3-メチルヒスチジン1600mg/kg 投与後 30 分頃から急速に血圧が降下し、投与後 80 分まで血圧降下が持続した。その後、降圧効果は投与後 290 分まで維持された。ある条件下では、豚肉等の動物性タンパク質の摂取は高血压疾患の予防において有効である傾向が認められた。今後更に詳細な検討が必要であると考えられる。

文献
1) 平成11年 人口動態統計（確定数）の概況。厚生省大臣官房統計情報部。1999
2) 日和田邦夫、荻原俊夫、他。日本老年医学会誌 36：576-603, 1999
3) 平成10年度 国民医療費の概況。構成大臣官房統計情報部。1998
4) Liu L, Ikeda K, Yamori Y, on behalf of the China - Japan WOH Cardiovascular Hypertension Research 23(2)：157-7, 2000
5) 奈良安雄、家森幸男、アミノ酸と高血圧。代謝 28：117-123, 1991
8) 家森幸男, 堀江良一, 半田 耕, ファルマシア別刷 vol.12：731-735, 1976
9) Brockway BP, Mills PA, Miller JT, Azar SA. A New Radio-Telemetry System For Continuous Chronic Measurement And Recording Of Blood Pressure,Heart Rate, And Activity In The Rat.Data Science, Inc. 1989
12) Long CL, Haverberg LN, Young VR, Kinney JM, Munro HN, Geiger JW. Metabolism of 3-methylhistidine in man. Metabolism 24：929-935, 1975
13) 梓山圭吉, 高田康二, 江川 真, 山本郁穂, 藤塚博, 大塚健吉, 日本農芸科学会誌 65：35-43, 1991
14) 関 英治, 川崎晃一, 吉田真弓, 篠島克裕, 山屋圭, 松井利郎, 裏畜 豊, 日本栄養・食糧学会誌 52：271-277, 1999
15) 松井利郎, 川崎晃一, 日本栄養・食糧学会誌 53：77-85, 2000
食肉摂取の神経細胞死阻止効果の研究

Effects of Meat uptake on the Protection against Neuronal Death

高田 明和・高田 由美子・浦野 哲盟・井原 勇人・永井 信夫
（浜松医科大学医学部）

Akikazu Takada, Yumiko Takada, Tetsumei Urano, Hayato Ihara and Nobuo Nagai
(Hamamatsu University, School of Medicine)

Electric footshock was applied to rats and levels of tryptophan and its metabolites were measured in the plasma, central nervous system and peripheral tissues. Tryptophan levels increased immediately after in the plasma and all the brain areas immediately after stress application and returned to normal levels within 24 hours. Electric footshock elevated the levels of kynurenine in the plasma, liver, kidney and every part of the brain. 3-hydroxykynurenine and kynurenic acid levels were increased in the brain. Some metabolites of kynurenine pathway such as 3-hydroxykynurenine are neurotoxic, while other metabolite such as kynurenic acid may be neuroprotective. Increase in serotonin level in the hypothalamus and midbrain stabilizes emotion and prevents mood disorders.

1. 目的

脳内セロトニン系は多くの生理的、心理的な過程に関与しているとされる。トリプトファンはセロトニンの前駆物質であるが、その代謝経路は複雑である。血漿中、それに伴う脳内のトリプトファンレベルの上昇、セロトニンレベルを高めるだけでなく、キヌレニン系の代謝も高めることが知られている1。キヌレニン系の物質は神経変性疾患に関係するとして、研究者の注目を集めてきた2,3。とくにキノリン酸の増加、キヌレニン酸の低下はけいれんや神経細胞死に関係するとされる。とくにキヌレニン酸は興奮性アミノ酸の拮抗物質として注目されている。末梢ではトリプトファン95%以上がキヌレニン系に代謝され、セロトニンへ代謝される部分は1%くらいである。今回急性のストレスを負荷したラットの血漿、末梢組織、脳組織におけるトリプトファン代謝産物の変化を検討した。

2. 方法

（1）動物：生後9週のオスのウィスタンラットを用いた。足刺激は床の電線に0.19mAの電流を10秒与え、50秒休止で20分負荷した。

（2）採血：動物をエントバルビタール麻酔下で心臓貫刺により採血した。

（3）脳の採取：脳は採取後氷の上で冷やし、脳の各部位を採取した後、すぐに凍結した。凍結脳組織は0.2%EDTAを含む0.15N 過塩素酸（pH 3.0）を加えてホモジネートし、遠心後ろ過して測定時まで凍結した。

トリプトファン（TRP）、セロトニン（5-HT）、5-ハイドロキシインドール酢酸（5-HIAA）測定：HPLCの装置はBeckman 110B pump（Beck-
Fig. 1 Tryptophan (TRP) concentrations in different regions of brain in rats subjected to electric footshock. con: control group, E0: immediately after electric footshock, E1: 24 h after electric footshock. Values are presented as mean±SD. ***p<0.001 compared to control group.
Fig. 2 Plasma concentrations of kynurenine (KYN), 3-hydroxykynurenine (3-HKYN) and kynurenic acid (KYNA) in rats subjected to electric footshock. **p<0.01; ***p<0.001 compared to control group.

Fig. 3 Kynurenine (KYN) concentrations in kidney and liver in rats subjected to electric footshock.

4. 考察

今回我々は足電気刺激後におけるセロトニンとキヌレニン経路の代謝の変化を中脳と末梢の組織で調べた。我々はすでに足電気刺激が血漿、末梢においてTRPの濃度を増すことを見た4-6。今回は足電気刺激により視床下部と中脳においてのみ5-HTの濃度を増す結果が得られた。5-HIAAは線条体をのぞく脳内のすべての領域で増加していた。このことは脳の各領域でストレス後に5-HTのturnoverが亢進していることを示している。
Fig. 4 Kynurenine (KYN) concentrations in different regions of brain in rats subjected to electric footshock.

Fig. 5 3-Hydroxykynurenine (3-HKYN) concentrations in different regions of brain in rats subjected to electric footshock.
TRP のもう一つの代謝経路はキヌレニン (KYN) 経路である。KYN 経路の多くの代謝物は脳内に認められている1-3)。重要な点は KYN 経路のある物質は神経保護作用があり、あるものは神経障害性であるということである。従ってストレスにおいて、キヌレニン代謝経路がどのようにになるかを研究することは重要と思われる。

KYN 経路の最初の反応は hepatic tryptophan 2,3- dioxygenase (TDO) や indoleamine 2,3-dioxygenase (IDO) である。後者は特異性において厳格ではないが、脳や腎臓など多くの組織に存在している7)。今回の研究では足電気刺激は KYN を血漿、肝臓、腎臓、脳などで上昇させたが24時間後には正常に戻ることが示された。

KYN は長鎖中性アミノ酸の担体で脳内に運ばれる8)。さらに、その輸送は肝臓、腎臓、心臓など未梢の組織の切片を用いて調べた場合より脳の切片を用いた方が数倍早いことが示されている1)。

IDO は 5-hydroxytryptophan, 5-HT, melatonin の代謝に作用する1)。IDO は肝臓には存在しないが、腸管、肺、胎盤、腎臓、脳に存在する。足電気刺激は TDO 系と IDO 系の両者を活性化する可能性がある。足電気刺激は TDO 依存性の肝臓における合成の一方を IDO 依存性の腎臓、脳よりも著明に上昇させる。おそらく足電気刺激によって TDO 経路の方が IDO 経路よりも効果的に活性化すると思われる。

いくつかの KYN 代謝産物は神経刺激性、けいれん惹起性、神経毒性の作用があることが示されている9)。一つは 3-HKYN である。これは kynurenine 3-hydroxylase により合成される。kynurenine 3-hydroxylase の活性は KYN の 3-HKYN への転換の程度で調べられる7)。この研究では 3-HKYN は足電気刺激後血漿中と脳内で増加することが示された。3-HKYN の高濃度の上昇は脳機能の異常を引き起こす可能性がある10)。

3-HKYN による神経細胞死がハンチントン病に似た異常を示すことも報告された9)。それはアポトーシスの状態を呈する。3-HKYN が KYN/ TRP 系でもっとも毒性が強いとの報告もある10)。

KYN からの他の代謝産物、KYNA は不可逆性的 transamination に関係することが示されている11, 12)。その反応は kynurenine aminotransferase (KAT) I と II による13, 14)。KYNA は内因性の興奮性アミノ酸受容体の拮抗物質であるから、興奮性の神経伝達を修飾する可能性がある。今回の研究では、ストレスが中枢神経系において、興奮性神経伝達を修飾する可能性があることが示された。KYNA は低濃度では NMDA の glycine coagonist site を阻害する。これによりグルタミン酸受容体の過度の活性化にたいする防御機構として働く可能性がある。KYNA はけいれんの際に増加し15)、実験的に KYN が増加しているような場合にはけいれんが弱められ、神経保護作用があることが示されている16, 17)。脳内では KYNA のレベルは低い。しかし、KYN 投与でこのレベルは簡単に高まる。全身性に KYNA やそれより強いアナログである 7-chloro または 5,7-dichlorokynurenic acid の投与は脳虚血の後のグルタミン酸の放出、脳障害、行動異常を抑制する18)。

5. 要 約

ラットに足電気刺激を負荷し、血漿、脳、肝臓、腎臓のトリプトファン (TRP) とその代謝産物を測定した。TRP は足電気刺激直後に血漿や脳内各部で増加し、24時間後にはもとに戻った。足電気刺激は血漿、肝臓、腎臓におけるキヌレニン (KYN) を増加させた。3-ヒドロキシキヌレニン (3HKYN) とキヌレニン酸 (KYN) は脳内で増加した。キヌレニン系の代謝産物のうち 3HKYN は神経障害性があり、KYNA は神経保護作用が
あるといわれる。海馬や中脳でのセロトニンの増加は情動を安定させる。従ってストレスから生じる脳の機能異常はトリプトンの代謝産物によって是正されると考えられる。

文献
Purification of ACE Inhibitory Peptide and Search of Biologically Active Components in Animal Bone Constituents

Michio Muguruma, Ryosuke Kamishima and Satoshi Kawahara
(Faculty of Agriculture, Miyazaki University)

Bone contains the various functional materials, which has bioregulation. Therefore, it is considered that the functional materials are existed in the animal bone extracts. The purpose of this study is to isolate and purify their functional materials, especially angiotensin I converting enzyme (ACE) inhibitory peptides from chicken bone extracts.

First of all, the chicken bone extracts were obtained by cooking process of chicken bones. The extracts were hydrolyzed by pepsin, trypsin or α-chymotrypsin. HPLC and SDS-PAGE analyses of those hydrolyzates showed that the components in bone extracts were degraded to low molecular weight. ACE inhibitory activity in bone extract and their hydrolyzates was measured. Their inhibitory activities were dose dependent. The ACE inhibitory activity of the enzymatic hydrolyzate rose more remarkably than that of non-hydrolyzate. The digest after trypsin treatment showed the strongest ACE inhibitory activity. The digest was purified by gel filtration and reverse phase HPLC. The molecular weight of final active fraction was about 600-1,000, and its fraction showed inhibitory activity with IC50 value of 4.5μg/ml.

1. 目 的

動物の骨は肥料、試料、または食品素材、天然調味料として広く利用されている。骨の構成成分としてはコラーゲン、γ-カルボン酸含有タンパク質、各種糖タンパク質、プロテオグリカン、IGF や TGF などの各種増殖因子群、トランスフェリンやイムノグロブリンなどの血中タンパク質群など多くの成分が含まれている。従って、当然のことながら、動物骨から抽出したエキス中に多くの生体調節作用を持つ機能性成分が存在していると考えられる。しかし、骨抽出物から機能性物質を検索した研究はほとんど見当たらない。そこで、骨抽出物から生理活性機能を有する物質を検索しそれらを単離精製することを本研究の目的とした。

高血圧症は各種臓器障害、血管性疾患の危険因子であり原因の明らかな二次性高血圧症と95％を占める原因不明の本態性高血圧症に分類される。本態性高血圧の治療は減量療法、アルコールの制限、規制的な運動、減塩療法などの非薬物療法が主体となるが薬物療法と同時に行われることが多
い3）。高血圧症に対しての降圧療法の重要性は広
く認識され、近年、降圧薬の開発が進み、副作用
の少ない薬が使用できるようになり、比較的安全
に降圧治療が行えるようになった。中でもアンジ
オテンシンIを強力な昇圧ペプチドであるアンジ
オテンシンIIに変換するとともに降圧ペプチドで
あるプラジキニンを不活性化するという両面から
血圧上昇に関与しているアンジオテンシンI変換
酵素(ACE)の阻害薬は、その安全性と有用性か
ら高血圧治療の第一選択薬の一つとしてあげられ
ている。しかしながら降圧薬療法は態度の血圧低
下、一過性の腎機能低下、発疹、目まいなどの副
作用の問題も指摘されている3）。従って、副作用
の面で優れていると考えられる天然物質から血圧
上昇抑制活性を持つ物質が調査できれば人間の健
康維持に大きく貢献できる。近年、いろいろな材
料からのACE阻害ペプチドに関する研究が行われ
ている3-5)。

そこで、この血圧抑制効果のあるACE阻害活
性に注目して検索した結果、ACE阻害活性を有
する物質が牛、豚、鶏も抽出物中に存在すること
を前報で明らかにした10)。今回は主にACE阻害
物質の精製について検討した。

2. 方 法

2.1 試料の調製

骨抽出物は、伊藤ハム株式会社中央研究所より
提供していただいた。試験区として牛骨（大腿
骨）、豚骨（大腿骨）、鶏ガラ（脚部無）を使用し
た。

各1〜2.2kgの骨をオートクレープで121℃、
30分間処理した後、蒸留水で4時間加熱抽出し、
ベーパータオルでろ過した。このろ液を、脂肪層
と水層に分けて分注した。この抽出液の水層画分
にはまだかなりの脂質も含まれているので、これ
をできるだけ除去する目的で30℃、18,000rpm、
60分間遠心分離し、水溶液をろ紙（ADVANTEC
TOYO No.5A）でろ過した。このろ液を凍結乾燥
後、PBS（pH 7.5）に溶解し試料として用いた。

2.2 酵素分解

酵素は、ペプシン、トリプシン、γ-キモトリ
プシン（いずれもシグマ社製）を使用した。

3種類の酵素を5mg/mlになるように0.001N
塩酸に溶解して、pHを1N塩酸で調整した後、
動物骨抽出物のタンパク質濃度を基準に100：1の
割合で添加した。ペプシンは37℃、pH2で、トリ
プシンは37℃、pH7.5で、γ-キモトリプシンは
25℃、pH7.5でそれぞれ6時間反応させた。1N
水酸化ナトリウム溶液でpHを7.5に調整した
後、95℃で10分間加熱して酵素を失活させて反応
を停止後、10,000rpm、10分間遠心分離し、上清
画分を生理活性機能評価に供した。

2.3 高速液体クロマトグラフィーによる分析

高速液体クロマトグラフィー（HPLC）による
分析は、TSKgel G2000SWxlカラム（7.8mm I.
D.×30cm）を島津LC・10AD型の高速液体クロ
マトグラフィー装置に接続して、溶出液として
0.1%TFA、45%アセトニトリルのイソクラテ
ィック溶出法で分析した。

2.4 アンジオテンシンI変換酵素（ACE）阻
害活性の測定法

Cushmanらの方法11)に準じて、和光純薬工業
株式会社製ウサギ肺由来ACEと、ナカライテス
ク社製合成基質HHL（Hippuryl-L-Histidyl-L-
Leucine）を用いて測定した。すなわち、生成し
た馬尿酸を酢酸エチルにて抽出し、228nmの吸
光度を測定した。阻害率は、サンプルの吸光度を
S、サンプルの代わりに超純水を加えて同様に反
応させた時の値をC、あらかじめ反応停止液を加
えて反応させた時の値をBとして次式により求め
た。

\[\text{阻害率（％）} = \left\{ \frac{(C-S)}{(C-B)} \right\} \times 100 \]
阻害活性（IC₅₀）は、上式により求められる阻害率が50%を示す時の阻害物質濃度（反応液1ml当たりのmg数）で示した。

2.5 ACE阻害活性化因子の精製

最もACE阻害活性の高かった鶏骨抽出物のトリプシン分解物のACE阻害活性化因子をゲルろ過HPLC、逆相HPLCを行って精製した。高速液体クロマトグラフィー装置は島津製 LC-10AD、LC-6AD を用いた。検出器は島津製 SPD-6A、JASCO製 875UV を使用した。カラムは東ソー TSKgel G2000SWXL（7.8mm I.D.×400mm）、GL-science Inertsil ODS-2（6.0mm I.D.×150 mm）、およびナカライテスク COSMOSIL 5PE-MS（4.6 mm I.D.×250 mm）を使用した。

3. 結果と考察

3.1 高速液体クロマトグラフィーによる低分子化の測定

食品タンパク質由来のACE阻害ペプチドとしては、牛乳カゼイン、乳清タンパク質、イソプロチオ色素、Cytocrome C（12.4kDa）とRivoflavin（376Da）を用いた。そのHPLCプロファイルを以下に示す。

![HPLC profiles of chicken bone extracts and their hydrolysates.](image)

Fig. 1 HPLC profiles of chicken bone extracts and their hydrolysates.

HPLC condition:
- Column: TSKgel G2000SWxL (7.8 mm I.D. × 30 cm)
- Eluent: 0.1% TFA, 45% CH₃CN
- Flow rate: 0.2 ml/min
- Detection: OD at 215 nm

Molecular weight marker:
1. Cytochrome C (12.5 kDa)
2. Rivoflavin (376 Da)
ヒジキ、鶏卵由来タンパク質の酵素分解物から多数同定されているが、これらが、実際に体内で生体調節機能を発揮するためには消化管プロテアーゼに耐性があり、かつ吸収されやすい短鎖のペプチドであることが望まれる。そこで、試料として消化管プロテアーゼを用いてできるだけ完全に加水分解した酵素分解物を調製した。

鶏骨抽出物のペプシン、トリプシン、α-キモトリプシンによる加水分解物の分子量分布をHPLCにより分析した結果をFig. 1に示した。いずれの試料も、未分解物に見られる溶出時間30分のピークが、加水分解することにより消失し、溶出時間35〜60分のピークが多数出現することが認められた。カラムから溶出してくる時間が長くなるほど低分子化していると考えられることから、鶏骨抽出中の構成成分が加水分解により低分子化されたことが明らかになった。また、ここには示していないが、アクリルアミド濃度7.5〜17.5%のグラジェントゲルを用いたSDS-PAGEや低分子成分の検出が可能なトリシンシステムを用いたSDS-PAGEの結果からも、各種酵素による加水分解により鶏骨抽出成分の低分子化が確認できた。

3.2 鶏骨抽出物およびその酵素分解物のACE阻害活性

鶏骨抽出物およびそのペプシン、トリプシン、α-キモトリプシンによる加水分解物のACE阻害活性を測定したところ、阻害率はいずれの試料もタンパク質濃度依存的に上昇した。この結果から得られたIC₅₀値をFig. 2に示した。酵素未分解物と酵素分解物のIC₅₀値を比較したところ、酵素分解物のIC₅₀値では、未分解物よりかなり小さい値が得られた。従って、骨抽出液のACE阻害活性はペプシン、トリプシン、α-キモトリプシンによって加水分解することにより、著しく上昇することが明らかになった。ACE阻害活性の最も高かったトリプシン分解物のIC₅₀値は0.28mg/mlを示した。この活性は前報で明らかにした牛、豚、鶏骨抽出およびその酵素分解物の集中で最も高い値であった。また、対照として測定した既知のACE阻害物質であるカロノシンのIC₅₀値0.86mg/mlや、今までに報告されているイリシ、サバ、コーンのペプチド粗精製品のIC₅₀値1.18〜1.86mg/mlと比較すると小さな値であっ

![Graph](image.png)

Fig. 2 ACE inhibitory activities of chicken bone extracts and their hydrolysates. IC₅₀: Concentration of protein required to inhibit 50% of the ACE activity.
り、動物骨抽出物は食品含有物としてはかなり高いACE阻害活性を有することが明らかになった。

3.3 ゲルろ過HPLCによる精製

最も活性の高いかった鶏骨抽出物のトリプシン分解物をまず、東ソーTSKgel G2000SW_xL（7.8mm I.D.×400mm）カラムを用いてゲルろ過HPLCを行った。溶出は0.1%トリフルオロ酢酸、45%アセトニトリルを溶出液としたイソクラティック溶出法により、流速は0.5ml/min、検出は280nmで行い、各分割量1mlで溶出した（結果示す）。その結果、溶出時間19分～21分の画分に高いACE阻害活性が認められた。そこで、この画分を分取し次のステップに供した。

3.4 逆相HPLCによる精製

ゲルろ過HPLCによって得られた活性画分をGL-science Inertsil ODS-2（6.0mm I.D.×150mm）を用いて逆相HPLCで分離精製を行った。溶出は0.1%トリフルオロ酢酸、アセトニトリルの0%～10%（0分～15分：0%，15分～65分：0%～50%）のリニアグラジェントにより行った。流速は1ml/min、検出は225nmで行い、1mlずつ分取した。そのクロマトグラムをFig.3に示した。この段階ではまだ多くのピークが観察され、これらのピーク全体にACE阻害活性が認められたことから、トリのトリプシン分解物は単一のペプチドによりACE阻害活性を示すのではなく複数の阻害ペプチドの混合物であることが示唆された。とくに溶出時間44分の画分でIC₅₀値として126μg/mlという高い阻害活性が認められた。そこでこの画分を、相対的に芳香族化合物の保持が大きい性質を持つナカライテスクCOSMOSIL 5PE-MS（4.6mm I.D.×250mm）カラムを用いて精製した。溶出液として0.1%トリフルオロ酢酸、20%アセトニトリルを用いたイソクラティック溶出法で行い、流速は0.5ml/min、検出は225nmで行った。その溶出パターンはFig.4-Aに示したとおりで、おもに14のピークのうちフラ

Fig.3 Reverse-phase HPLC profiles of the active fraction after GL-science Inertsil ODS-2 column.
HPLC condition: Column: Inertsil ODS-2 (6.0 mm I.D. ×150 mm)
Solvent system: 0% to 50% CH₃CN (50 min) in 0.1% TFA
Flow rate: 1 ml/min
Detection: OD at 225 nm
クション No.10に高い ACE 阻害活性が認められた。IC₅₀値は 42.2μg/ml であった。さらにこの No.10画分を再度同一分離条件で精製した。その結果、Fig. 4-B に示したように 2 つの画分が得られ、溶出時間25分の画分に IC₅₀値として 22.5 μg/ml を示す高い ACE 阻害活性が認められた。
Table 1 濃縮 ACE 抑制能因子の digest of chicken bone extract by trypsin

<table>
<thead>
<tr>
<th>Purification step</th>
<th>Column</th>
<th>Yield (%)</th>
<th>IC₅₀ (μg/ml)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chicken bone</td>
<td>—</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>extract</td>
<td>—</td>
<td>—</td>
<td>2700.0</td>
</tr>
<tr>
<td>Trypsin digest</td>
<td>—</td>
<td>100.00</td>
<td>300.0</td>
</tr>
<tr>
<td>Column 1</td>
<td>TSK gel G2000SWxl</td>
<td>32.30</td>
<td>257.0</td>
</tr>
<tr>
<td>Column 2</td>
<td>Inertsil ODS-2</td>
<td>2.40</td>
<td>126.0</td>
</tr>
<tr>
<td>Column 3</td>
<td>COSMOSIL 5PE-MS</td>
<td>0.39</td>
<td>42.2</td>
</tr>
<tr>
<td>Column 4</td>
<td>COSMOSIL 5PE-MS</td>
<td>0.12</td>
<td>25.5</td>
</tr>
<tr>
<td>Column 5</td>
<td>TSK gel G2000SWxl</td>
<td>0.02</td>
<td>4.5</td>
</tr>
</tbody>
</table>

最も活性の高かった鶏骨抽出物のトリプシン分解物の精製に関する一連の結果を Table 1 に示した。最終的にゲルろ過で得られた活性画分の高さにおいても血圧上昇抑制活性を示す可能性も示唆された。また、鶏骨抽出物の酵素分解物には高い ACE 阻害活性を有する、分子量600〜1,000のペプチドが存在することが明らかになった。現在、精製された ACE 阻害活性を示す画分のペプチドシーケンス解析を行い、今後、アミノ酸配列の解明や消化耐性の検討を通じて、本態性高血圧抑制作用をもつ機能性食品として利用されることが期待される。さらに、牛、豚骨抽出物の ACE 阻害活性画分の精製についても検討している。また、抗酸化活性、免疫賦活活性やその他の生理性機能の検討を行うとともに、骨抽出物脂肪層に含まれる生理性機能の評価を検討中である。

4. 要約

動物の骨構成成分から生理活性機能を有する物質の検索とその単離・精製を行うことが基本研究の目的である。今回は主に、鶏骨抽出物から血圧上昇を抑制する ACE 阻害活性を示す画分の精製を行った。

まず、鶏の骨を裁断し、オートクレープ後熱水抽出し、遠心分離して水溶層を分取し、骨抽出物を調製した。この試料をベース、トリプシン、α-キモトリプシンを用いて加水分解した試料を生理活性機能評価に使用した。これら酵素分解物をゲルろ過 HPLC により分子量分布を解析したところ、未分解物と比べて低分子の物質が多数出現したことが認められた。次に鶏骨抽出物およびその酵素分解物の ACE 阻害活性を測定したところ、阻害活性を示す画分の添加による阻害率は、いずれの試料もタンパク質濃度依存的に上昇した。とくに高い阻害活性を示したトリプシン分解物を用いて、その ACE 阻害活性化因子をゲルろ過 HPLC および逆相 HPLC 等のカラムにより精製した。その結果、鶏骨抽出物のトリプシン分解物中には、分子量600〜1,000と推定される、強い ACE 阻害活性を有する物質が存在することが明らかになった。その IC₅₀ 値は 4.5 μg/ml であった。

文献
1) 野田政樹：骨のバイオロジー，p23，羊土社（1998）
2) 野村岳司：日本臨床（高血圧），50，137-142（1992）
3) 塩之入洋，杉本孝一，高崎 泉，安田 元：日本臨床（高血圧），50，743-752（1992）
4) 金木建夫，石川宣子，目黒 照：日本農芸化学会誌，57，1143-1146（1983）
8) 松井利郎，川崎晃一：日本栄養・食糧学会誌，53, 77-85 (2000)
9) 末綱邦夫：日本水産学会誌，64, 862-866 (1998)
10) 六車 三治男，上島良介，河原 聡：伊藤記念財団

平成11年度食肉に関する助成研究調査成果報告書，18, 338-345 (2000)
12) 大庭一郎：でん粉と食品, p11-21 (1996)
Studies on Improvement of Alcoholic Liver Damage by Feeding of Animal By-products

Tetsuji Nagao and Koji Nakade

(Sprague--Dawley male rats at 5 weeks of age grouped into 8 experimental groups; group treated orally with 100 or 1000 mg/kg bile powder dissolved in 20% ethanol (I, II); group treated orally with 20 or 40 mg/kg liver peptide dissolved in 20% ethanol (III, IV); group treated orally with 1000 mg/kg L-alanine dissolved in 20% ethanol (V); group treated orally with 20% ethanol (VI); Animals in the groups I--VI were given access to low-carbohydrate diet (LCD). Animals were given only LCD or standard diet as respective controls (VII, VIII). All groups were administered for 10 weeks. Neither death nor adverse changes in general condition were observed in any group during the administration period. There were no significant differences between groups in body weight gains. Food consumptions in the LCD-fed groups were increased as compared to the control VIII. No adverse changes in any blood chemistry parameter concerning the liver function were detected in any group. However, histopathological observation revealed that the degree of fatty change of periportal hepatocytes was decreased when applied to the bile powder or liver peptide. These results suggest the possibility of improvement of physiological condition of human liver by feeding of animal by-products.

Key words: Rats; liver peptide; bile powder; liver function; low-carbohydrate diet
重要であると考えられる。これらの理由から本研究は、畜産副生成物の機能性食品素材としての有効利用を最終目的とした。

今回、胆汁の胆汁分泌促進効果による肝臓のコレステロール代謝およびアルコールの吸収に及ぼす影響の有無を検討し、同時にレバーペプチドの肝機能改善効果についても検討した。すなわち高濃度のアルコールを雄ラットに長期連続して摂取させて肝障害を惹起させ、同時に胆汁末あるいはレバーペプチドを摂取させて、これら畜産副生成物のアルコール性肝障害の予防効果の有無について確認した。また、肝臓代謝酵素の活性亢進によるアルコール性肝障害惹起を目的として、本研究では低炭水化物食を飼料として摂取させた。

2. 材料および方法

2.1 動物

実験には、日本チャールス・リバー株式会社厚木飼育センター生産の雄 Crj：CD（SD）IGS ラットを4週齢にて購入し、使用した。入荷した動物は騒化のため1週間予備飼育し、その間、飼料として固形飼料 CE-2（クレア）および水道水を自由に摂取させて、体重増加および一般状態に異常がない動物を実験に供した。動物は、温度24±1℃、相対湿度55±5%、照明12時間（午前7時～午後7時）に設定されたパエリアシステムの飼育室で個别に飼育した。なお、予備飼育後、体重別層化無作為抽出法により8群に群分けし、個體識別した。

2.2 群構成

各群7匹に群分け、5週齢時に20％アルコールに①レバーペプチド100mg/kg体重になるよう溶解した群、②レバーペプチド1000mg/kg体重になるよう溶解した群、③胆汁末20mg/kg体重になるよう溶解した群、④胆汁末40mg/kg体重になるよう溶解した群、⑤L-アラニン1000mg/kg体重になるよう溶解した群、⑥20％アルコールを投与した群、⑦Alcohol非投与群とした。なお①～⑦には、飼料として低炭水化物食（Table 1）を摂取させた。⑧群は、アルコール非投与群で、飼料として標準組成飼料を与えた。群構成を以下に示す。

<table>
<thead>
<tr>
<th>群</th>
<th>投与物質（強制経口投与）</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>レバーペプチド 100 mg/kg+20%アルコール+低炭水化物飼料</td>
</tr>
<tr>
<td>2</td>
<td>レバーペプチド1000mg/kg+20％アルコール+低炭水化物飼料</td>
</tr>
<tr>
<td>3</td>
<td>胆汁末20mg/kg+20％アルコール+低炭水化物飼料</td>
</tr>
<tr>
<td>4</td>
<td>胆汁末40mg/kg+20％アルコール+低炭水化物飼料</td>
</tr>
<tr>
<td>5</td>
<td>L-アラニン1000mg/kg+20％アルコール+低炭水化物飼料</td>
</tr>
<tr>
<td>6</td>
<td>無処置+20％アルコール+低炭水化物飼料</td>
</tr>
<tr>
<td>7</td>
<td>無処置+無処置+低炭水化物飼料</td>
</tr>
<tr>
<td>8</td>
<td>無処置+無処置+標準飼料</td>
</tr>
</tbody>
</table>

2.3 検査・測定

（1）一般状態の観察：実験期間中、毎日一般状態を投与前と投与後に観察した。

（2）体重、摂餌量の測定：実験期間中、週1回、体重および摂餌量を測定した。また、剖検時にも体重を測定した。なお、摂餌量は給餌量と残餌量の差として求め、1匹当りの24時間の摂餌量とした。

（3）剖検および器官重量の測定：10週間の投与期間終了翌日に、エチル麻酔して開腹し、内側主要器官を剖検した。採血後、肝臓および脾臓を摘出し重量を測定し、体重比重量（肝臓あり/肝臓重量/剖検時体重）×100％を求める。

（4）血液の生化学的検査：剖検に引き続き、腹部後大動脈よりヘパリン処理した注射針およびシリンジを用いて採血し、3000rpmで20分間遠心し、血清を得た。得られた血清について、総コ
Table 1 Component of low-carbohydrate or standard diet

<table>
<thead>
<tr>
<th>Group</th>
<th>対照群（標準粉末飼料）</th>
<th>低炭水化物粉末飼料</th>
</tr>
</thead>
<tbody>
<tr>
<td>飼料組成</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ショ糖</td>
<td>10.0000%</td>
<td>10.0000%</td>
</tr>
<tr>
<td>コーンスターチ</td>
<td>55.3818%</td>
<td>11.7939%</td>
</tr>
<tr>
<td>ソーダーカゼイン</td>
<td>15.9531%</td>
<td>15.9531%</td>
</tr>
<tr>
<td>L-システイン</td>
<td>0.0222%</td>
<td>0.0222%</td>
</tr>
<tr>
<td>DL-メチオニン</td>
<td>0.0135%</td>
<td>0.0135%</td>
</tr>
<tr>
<td>オリーブオイル</td>
<td>2.7242%</td>
<td>2.7242%</td>
</tr>
<tr>
<td>コーンオイル</td>
<td>8.1727%</td>
<td>8.1727%</td>
</tr>
<tr>
<td>エチルリノレート</td>
<td>1.1551%</td>
<td>1.1551%</td>
</tr>
<tr>
<td>ビタミン混合</td>
<td>2.2186%</td>
<td>2.2186%</td>
</tr>
<tr>
<td>ミネラル混合</td>
<td>4.3588%</td>
<td>4.3588%</td>
</tr>
<tr>
<td>セルロースパウダー</td>
<td></td>
<td></td>
</tr>
<tr>
<td>計</td>
<td>100.0000%</td>
<td>100.0000%</td>
</tr>
</tbody>
</table>

ビタミン混合		
(100g中)		
ビタミン A (50000IU)	240mg	
ビタミン D₃ (40000IU)	20mg	
ビタミン B₁	14.5mg	
ビタミン B₂	25mg	
ビタミン B₃	14.5mg	
ビタミン B₄	5mg	
ビタミン A₁	5mg	
バントチン酸カルシウム	100mg	
ナイアシン	75mg	
ビオチン	0.5mg	
硫酸	5mg	
インシトール	500mg	
パラアミノ安息香酸	250mg	
塩化コリリン	5000mg	
グルコース	93.75g	

ミネラル混合		
(100g中)		
CaCO₃	29.77g	
KH₂PO₄	32.22g	
CaHPO₄	7.49g	
MgSO₄·7H₂O	10.19g	
NaCl	16.74g	
Fe-citrate	2.75g	
KI	0.08g	
MnSO₄·4H₂O	0.71g	
CuSO₄·5H₂O	0.03g	
ZnCl₂	0.025g	

レステロール (mg/dl), トリグリセライド (mg/dl), リン脢質 (mg/dl), GOT (IU/l) および GPT (IU/l) を求めた。

（5）肝臓，脾臓，腸管の病理組織学的検査：
各群全例の肝臓，脾臓および腸管を摘出し出0.1 M 磷酸緩衝10%ホルマリン液で固定後，パラフィン包埋し，ヘマトキシリン・エオジン染色標本を作成し，病理組織学的に観察した。

3. 結 果

3.1 生死および一般状態
いずれの投与群にも死亡動物は認められなかった。一般状態の変化としては20％アルコール投与群の全例に投与後1～2時間，軽度の自発運動量の低下ならびに半眼が観察されたが，その後は回復した。軟便も観察されなかった。
3.2 体重および摂餌量

体重は群間に有意差が散見されたが、連続性はみられず投与の影響とは考えられなかった（Table 2）。また、摂餌量については、①群から⑦群の間には有意差はみられなかったが、低炭水化物飼料群（①群から⑦群）の1日摂餌量は標準飼料群⑧群と比較して有意に低い値であった（Table 3）。

3.3 器官重量

剖検時の体重、肝臓および脾臓の絶対重量には、群間に有意差はみられなかった。肝臓の比体重値に関しては、①群から④群の値が対照群⑦群（無処置＋無処置＋低炭水化物飼料）と比較して有意に高い値を示したが、対照群⑧群（無処置＋無処置＋標準飼料）との間には有意差はみられなかった（Table 4）。

<table>
<thead>
<tr>
<th>Table 2 Body weights changes of males (g, mean±S.D.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 3 Food consumption of males (g, mean±S.D/day.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Group</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>4</td>
</tr>
<tr>
<td>5</td>
</tr>
<tr>
<td>6</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>8</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>10</td>
</tr>
<tr>
<td>11</td>
</tr>
<tr>
<td>12</td>
</tr>
<tr>
<td>13</td>
</tr>
<tr>
<td>14</td>
</tr>
<tr>
<td>15</td>
</tr>
</tbody>
</table>
Table 4 肝と脾の重量（male rats）（mean ± SD）

<table>
<thead>
<tr>
<th>Group</th>
<th>Final body weight [A]</th>
<th>Liver [B]</th>
<th>Spleen [C]</th>
<th>B/A</th>
<th>C/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>409.1 ± 28.4</td>
<td>14.03 ± 1.38</td>
<td>0.72 ± 0.11</td>
<td>3.43 ± 0.17**</td>
<td>0.18 ± 0.03</td>
</tr>
<tr>
<td>2</td>
<td>392.0 ± 33.9</td>
<td>12.72 ± 1.56</td>
<td>0.70 ± 0.08</td>
<td>3.24 ± 0.17*</td>
<td>0.18 ± 0.02</td>
</tr>
<tr>
<td>3</td>
<td>390.1 ± 43.6</td>
<td>12.80 ± 1.77</td>
<td>0.75 ± 0.11</td>
<td>3.28 ± 0.23*</td>
<td>0.19 ± 0.02</td>
</tr>
<tr>
<td>4</td>
<td>413.9 ± 26.0</td>
<td>14.04 ± 1.13</td>
<td>0.73 ± 0.10</td>
<td>3.39 ± 0.10**</td>
<td>0.18 ± 0.02</td>
</tr>
<tr>
<td>5</td>
<td>436.2 ± 27.4</td>
<td>13.58 ± 1.79</td>
<td>0.81 ± 0.12</td>
<td>3.11 ± 0.23</td>
<td>0.19 ± 0.04</td>
</tr>
<tr>
<td>6</td>
<td>412.7 ± 36.5</td>
<td>13.04 ± 1.64</td>
<td>0.72 ± 0.10</td>
<td>3.16 ± 0.23</td>
<td>0.17 ± 0.01</td>
</tr>
<tr>
<td>7</td>
<td>422.2 ± 44.7</td>
<td>12.37 ± 2.28</td>
<td>0.73 ± 0.12</td>
<td>2.91 ± 0.27</td>
<td>0.17 ± 0.02</td>
</tr>
<tr>
<td>8</td>
<td>401.6 ± 56.1</td>
<td>13.05 ± 2.41</td>
<td>0.68 ± 0.11</td>
<td>3.24 ± 0.30</td>
<td>0.17 ± 0.02</td>
</tr>
</tbody>
</table>

* Significantly different from the control VII, P<0.05.
** Significantly different from the control VII, P<0.01.

Table 5 血液化学検査（mean ± S.D.）

<table>
<thead>
<tr>
<th>Group</th>
<th>No. of males</th>
<th>CHO (mg/dl)</th>
<th>TG (mg/dl)</th>
<th>PL (mg/dl)</th>
<th>GOT (IU/l)</th>
<th>GPT (IU/l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7</td>
<td>73.00 ± 6.06</td>
<td>72.86 ± 16.58</td>
<td>134.86 ± 8.65</td>
<td>101.57 ± 10.49</td>
<td>33.14 ± 3.10</td>
</tr>
<tr>
<td>2</td>
<td>7</td>
<td>58.00 ± 10.00</td>
<td>47.14 ± 10.10</td>
<td>111.29 ± 14.57</td>
<td>93.86 ± 10.83</td>
<td>32.71 ± 3.38</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>67.86 ± 4.85</td>
<td>53.43 ± 13.12</td>
<td>128.57 ± 6.39</td>
<td>96.29 ± 3.65</td>
<td>36.71 ± 2.35</td>
</tr>
<tr>
<td>4</td>
<td>7</td>
<td>70.71 ± 5.54</td>
<td>51.86 ± 6.59</td>
<td>131.00 ± 6.66</td>
<td>92.14 ± 7.50</td>
<td>34.86 ± 3.65</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>64.43 ± 3.15</td>
<td>57.43 ± 16.50</td>
<td>124.43 ± 4.77</td>
<td>108.86 ± 9.15</td>
<td>40.29 ± 3.40</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>62.57 ± 6.74</td>
<td>44.00 ± 11.40</td>
<td>117.86 ± 6.85</td>
<td>94.71 ± 4.76</td>
<td>35.29 ± 2.80</td>
</tr>
<tr>
<td>7</td>
<td>7</td>
<td>68.14 ± 5.20</td>
<td>50.71 ± 11.44</td>
<td>122.14 ± 8.03</td>
<td>91.00 ± 5.18</td>
<td>30.86 ± 2.50</td>
</tr>
<tr>
<td>8</td>
<td>7</td>
<td>74.71 ± 6.16</td>
<td>50.86 ± 15.46</td>
<td>134.00 ± 12.25</td>
<td>69.71 ± 8.55</td>
<td>26.14 ± 5.56</td>
</tr>
</tbody>
</table>

3.4 血液生化学的検査所見

①群から⑦群（低炭水化物飼料群）のGOT およびGPT が対照群（標準飼料）と比較して高い値を示したが、統計学的に有意差はみられなかった。TG およびPL には、群間に有意差はみられなかった（Table 5）。

3.5 病理組織学的所見

肝臓では門脈周囲圏に肝細胞脂肪化がみられ、⑧群では軽度であったが、⑦群ではやや増強し、⑥群ではさらに程度が強化した。②群では⑥群に比較するとやや軽減したが、①群では⑥群と差はなかった。⑤群でも⑧群に比較するとやや軽減したが、④群は⑥群と大差はなかった。⑤群は⑧群と同程度の脂肪化がみられた（Table 6, Fig. 1）。脾臓では全例に褐色色素の沈着および雑細血出がみられたが、群間に程度の差はなかった。さらに腸管の変化にも群間に差はみられなかった。

4. 考 察

ラット肝の薬物代謝酵素の活性が飼料中のタンパク質や脂肪ではなく、炭水化物によって一元的に支配されていることが知られている。

3.4 血液生化学的検査所見

①群から⑦群（低炭水化物飼料群）のGOT およびGPT が対照群（標準飼料）と比較して高い値を示したが、統計学的に有意差はみられなかった。TG およびPL には、群間に有意差はみられなかった（Table 5）。

3.5 病理組織学的所見

肝臓では門脈周囲圏に肝細胞脂肪化がみられ、⑧群では軽度であったが、⑦群ではやや増強し、⑥群ではさらに程度が強化した。②群では⑥群に比較するとやや軽減したが、①群では⑥群と大差はなかった。⑤群でも⑥群に比較するとやや軽減したが、④群は⑥群と大差はなかった。⑤群は⑧群と同程度の脂肪化がみられた（Table 6, Fig. 1）。脾臓では全例に褐色色素の沈着および雑細血出がみられたが、群間に程度の差はなかった。さらに腸管の変化にも群間に差はみられなかった。

4. 考 察

ラット肝の薬物代謝酵素の活性が飼料中のタンパク質や脂肪ではなく、炭水化物によって一元的に支配されていることが知られている。すなわち低炭水化物食はタンパク質や脂肪の含有量に関係なく肝薬物代謝酵素の活性を亢進させ、高炭水化物食はその活性を抑制する。アルコール性肝障害および栄養状態の変動を中島らは、アルコール性肝障害患者の多くは、アルコールを低炭水化物源に置き換える低炭水化物源の栄養パターンをとると報告している。このパターンはLieberらの開発したアルコール食と類似するものである。つまり炭水化物は肝薬物代謝酵素の活性に対してタンパク質や脂肪とは比較にならないほど大きな役割を担っていると考えられる。本研究では、肝薬物代謝酵素の活性亢進によるアルコール性肝障害惹起を目的として、Table 1に示す組成の低炭水化物食を飼料として長期摂取させ、同時に高濃度（20%）のアルコールを投与した。その結果、低炭水化物食摂取群では、血液生化学的検査における肝機能の指標としたGOT およびGPT は、標準食摂取群と比較して高い値を示したが、統計学的に

The Ito Foundation

The Ito Foundation
Fig. 1 Liver from a male rat administered with 20 mg/kg of bile powder and 20% alcohol and fed low-carbohydrate diet for 10 weeks. Note moderate fatty change of periportal hepatocyte. H&E, ×350 (A); Liver from a male rat administered with 20% alcohol and fed low-carbohydrate diet for 10 weeks. Note marked fatty change of periportal hepatocyte. H&E, ×350 (B); Liver from a male rat normal diet for 10 weeks. Note very slight fatty change of periportal hepatocyte. H&E, ×350 (C).

Table 6 Grade of histopathological changes of liver in male rats

<table>
<thead>
<tr>
<th>Group</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
</tr>
</tbody>
</table>

- Negative; ±, Very slight; +, Slight; ++, Moderate; +++, Severe; ++++, Severe

有意な差ではなかった。さらにCHO, TG, PLにも影響はみられず、血液生化学的検査からアルコール性肝疾患を裏付ける結果は得られなかった。しかし、肝臓の病理組織学的所見から、門脈周囲性の肝細胞脂肪化が低炭水化物食とアルコール併用適用により顕著に発現したことから、軽度なアルコール性肝疾患が惹起されていることを確認した。門脈周囲性の肝細胞脂肪化は、Table 6 に示すように、胆汁末併用投与および低濃度レバーベプチド併用投与によりその程度は軽減される傾向にあった。しかし、L-アラニンによる肝細胞内のmalate shuttleやTCA cycleの代謝系の賦活によるアルコール投与時における肝保護作用6)は確認できなかった。

5. まとめ

肝機能の血液生化学的指標には、胆汁末およびレバーベプチドのいずれにも明らかな効果はみられなかったものの、胆汁末およびレバーベプチドのいずれもアルコールの長期摂取による門脈周囲性の肝細胞脂肪化を軽減させることを、病理組織学的に確認したことから、胆汁末およびレバーベプチドは、アルコール性肝障害を予防する効果があると考えられる。

文献

1) 佐藤草夫、中島民江、小山 裕：低炭水化物食が化
2) 中島民江，村山忍三：アルコール性肝障害と栄養，病態生理，9，9，748-750，1990.
4) 文 豊：マウスの急性アルコール性肝障害に対するアラニンとオルニチン投与による保護作用の機序，慈恵医大誌，102，1231-1241，1987.
For the screening and highly utilization of physiologically active peptides derived from livestock, I established the experimental system to find the physiologically active peptides from livestock, especially meat, by using Hep G2 cell culture system. Especially, in this study, I focused on the evaluation of cholesterol metabolism. Namely, I established the screening and evaluation system to find the active peptides that regulate cholesterol synthesis or apolipoprotein A-I or B related to cholesterol secretion in Hep G2 cells. Concretely, I studied the effects of casein tryptic hydrolysate which was well known resources for physiologically active peptides on cholesterol synthesis or apolipoprotein A-I or B related to cholesterol secretion in Hep G2 cells. As cholesterol synthesis in Hep G2 cells measured by radioactive acetate, cholesterol synthesis decreased significantly by the addition of casein tryptic hydrolysate compared to control group during 12 or 3 hours incubation. Apolipoprotein A-I secretion by Hep G2 cells tended to increase by casein tryptic hydrolysate compared to control group during 24 hours incubation. I established the screening and evaluation system for cholesterol synthesis or apolipoprotein A-I or B concerning to cholesterol secretion. These results suggested that physiologically active peptides derived from beef materials might be able to find by using these techniques.

1. 目的

これまでの食品タンパク質由来の生理活性ペプチドに関する研究1) から、牛乳カゼインから、カゼインホスホペプチド、血圧降下ペプチドなどが発見され、現在では、どちらも特定保健用食品として厚生省が許可しています。これらの研究以外でも生理活性ペプチドの探索・評価に関する研究が各方面で現在活発に展開されていることは言うまでもありません2,3)。しかし、残念ながら、豚肉・牛肉・鳥肉などの畜産物からは、これまで生理活性ペプチドは発見されていません。これまでの研究は、動物実験が主流であり、大量の試料を必要とし、有効成分の特定を遅らせているのも原因の一つです。

従って、有効な生理活性ペプチドを発見するには、先端的な研究手法であり、高感度・迅速評価を可能とする（微量の試料でも迅速に評価が可能）ヒト培養細胞系を活用したスクリーニングが有効であると考えられます。しかし、残念ながら、培養細胞を活用した生理活性ペプチドに関する実験系は、あまり報告がありません。

そこで、畜産物由来の生理活性ペプチドの発見とそれらの効用を高めるために、ヒト培養肝細胞である HepG2 を活用して、畜産物（特に食肉）から生理活性ペプチドを発見するための条件設定を行うことを目的にしました。

今回は、肝臓機能を発現するヒト肝由来培養細胞
胞 HepG2 を活用したコレステロール合成やコレステロール分泌に関連するアポリポタンパク質 A-I および B を調節するペプチドの探索評価系の確立を行いました。具体的には、HepG2 培養細胞を培養し、培養液に、さまざまな生理活性ペプチドがすでに発見されている畜産物であるカゼイントリプシン加水分解物を添加して、コレステロール合成やコレステロール分泌に関連するアポリポタンパク質 A-I および B の分泌量に対する影響を検討しました。

2. 方 法

[実験 1]
① 細胞の培養条件の設定 1：血清を含む培地を用いた解析法

MEM を用いて 6 穴プレートに HepG2 細胞を 9×10^5 細胞/穴で播種し、CO₂ インキュベーターで、24 時間培養した。コンフルエンツ約 50％まで成長したら、培地を吸引除去し PBS で洗い、試験群の穴にはカゼイントリプシン加水分解物（1 mg/ml）を含む MEM 培地を、対照群の穴には MEM 培地のみを入れ、CO₂ インキュベーターで、48 時間培養した。培地を回収し、酵素免疫測定法を用いて培地中のアポリポタンパク質 A-I、アポリポタンパク質 B 濃度およびタンパク質濃度を測定した。

② 細胞の培養条件の設定 2：血清を含まない培地を用いた解析法

DMEM を用いて 6 穴プレートに HepG2 細胞を 11×10^5 細胞/穴で播種し、CO₂ インキュベーターで、24 時間培養した。その後、培地を吸引除去して血清フリー DMEM で洗った後、血清フリー DMEM 2.5ml を添加し、さらに 24 時間培養した。培地を吸引除去し、試験群の穴にはカゼイントリプシン加水分解物（1 mg/ml）を含む血清フリー DMEM を、対照群の穴には血清フリー DMEM のみを入れ、CO₂ インキュベーターの中で、24 時間培養した。培地を回収し、酵素免疫測定法を用いて培地中のアポリポタンパク質 A-I、アポリポタンパク質 B 濃度およびタンパク質濃度を測定した。

(1) アポリポタンパク質 A-I の定量 96 穴プレートに、標準アポリポタンパク質 A-I (HDL 溶液)、培地サンプル（試験剤を含む）を入れて 4℃でインキュベートする。各穴に一次抗体（マウスモノクローナル抗体）を入れて 37℃インキュベートする。各穴に洗浄緩衝液（0.5% Tween 20, 1% BSA を含む PBS）を加え洗浄する。各穴に二次抗体（ペルオキシダーゼで標識したヤギ抗マウス抗体）を加え、37℃でインキュベートする。各穴に反応止剤（濃硫酸）を加え、吸光度をマイクロプレートリーダーで測定する。

(2) アポリポタンパク質 B の定量 96 穴プレートに、標準アポリポタンパク質 B (LDL 溶液)、培地サンプル（試験剤を含む）を入れて 4℃でインキュベートする。各穴に一次抗体（マウスモノクローナル抗体）を 50μl ずつ入れて 37℃でインキュベートする。各穴に 8 連ビペットを用いて、洗浄緩衝液（0.5% Tween 20, 1% BSA を含む PBS）を加え洗浄する。各穴に二次抗体（ペルオキシダーゼで標識したヤギ抗マウス IgG）を加え、37℃でインキュベートする。各 well に洗浄緩衝液を加え洗浄する。各穴に基質溶液（リン酸水素ナトリウム、クエン酸 18.4g/l, O-フェニレンジアミン、過酸化水素水などを含む）を加え、37℃インキュベートする。各穴に反応止剤（濃硫酸）を加え、吸光度をマイクロプレートリーダーで測定する。
（3）タンパク質定量 市販のキットを用いて測定した。96穴プレートに、標準液（BSA溶液）と試験試料を入れる。Bio-Rad社製の試液を、各穴に入れる。マイクロプレートリーダーを用いて、吸光度を測定する。

③ 実験結果の統計分析には、Students t-test を用いた。

[実験 2]

① HepG2 培養細胞におけるカゼイントリプシン加水分解物のコレステロール合成能に対する影響評価およびその評価系の確立 コンフルエンスになった HepG2-2 培養皿（10 cm）から、培地を取り除き、皿に、1 mg/ml のカゼイントリプシン加水分解物添加（試験群）および無添加（対照群）と [1-14C] 酢酸ナトリウムを含む DMEM 培地（5μCi/10ml）をビペットマンで加えた。24時間、12時間、6 時間、3 時間 CO2インキュベーター中でインキュベートを行い、皿から、培地を取り除いた。0.15MNaCl を含む 50mM トリス塩酸緩衝液（pH 7.4）で洗った。同緩衝液を加え、細胞をかき取った。かき取った細胞を試験管にとり、遠心分離を行った。15% KOH エタノール溶液を加え搾押した。75℃の水槽インキュベーター中でケン化を行い、冷蔵下で石油エーテル加えて搾押し、上清をガラススピーチ管にとった。残った下層に、ビペットマンで石油エーテルを加え搾押し、上清をガラススピーチ管にとった。得られた溶液を40℃でインキュベートし、残った中に、コレステロールアセトン溶液を加えて搾押した。さらにジクロロメタン溶液を加え搾押し放置した。遠心分離し、残った沈殿物にアセトンを加えて搾押し、遠心分離を行った。残った沈殿物にジエチルエーテルを加え搾押し、遠心分離を行い、上清を捨てた。残った沈殿物メタノールを加えて搾押した。トルエン系シンチレーターを加え、液体シンチレーションカウンターで計測した。

② 実験結果の統計分析には、Students t-test を用いた。

3. 結果と考察

実験 1 の①細胞の培養条件の設定 1：血清を含む培地を用いた解析法の実験から、アポリボタンパク質 A-I および B 濃度は、カゼイントリプシン加水分解物添加により、対照群（無添加）と比較して上昇傾向が見られた（Table 1）。実験 1 の②細胞の培養条件の設定 2：血清を含まない培地を用いた解析法の実験から、アポリボタンパク質

Table 1	Effect of casein tryptic hydrolysate on applipoprotein A-I, B or protein in Hep G2 cells. (FBS containing medium)		
Experimental group	applipoprotein A-I (µg/ml)	applipoprotein B (µg/ml)	protein (µg/ml)
Control	7.23±1.98	0.66±0.05	3743±34
casein tryptic hydrolysate	7.87±1.34	0.70±0.02	3814±107

1. Means ± SEM of 3 samples per groups

Table 2	Effect of casein tryptic hydrolysate on applipoprotein A-I, B or protein in Hep G2 cells. (FBS non-containing medium)		
Experimental group	applipoprotein A-I (µg/ml)	applipoprotein B (µg/ml)	protein (µg/ml)
Control	0.33±0.01	4.86±0.11	166.8±2.5
casein tryptic hydrolysate	0.35±0.01	5.01±0.23	170.7±5.8

1. Means ± SEM of 3 samples per groups
食肉に関する助成研究調査成果報告書

280

A‑IおよびB濃度は，カゼイントリプシン加水

Table5EffectofcaseintrvDtichvdrolvsateoncholes
teroIsynthesisinllepG2cells.(6hoursincu

分解物添加により，対照群（無添加）と比較して

bation)

上昇傾向が見られた(Table2)。血清を含む条件

４

２
１
３

士舵
１１

５
９
９
４

dpm

と含まない条件で比較した場合は，アポリポタン

６
７
０
１
＋ ㈹

２
１
９
４

０１

controlcaseintryptichydrolysate

％

パク質A‑IおよびB濃度は，血清を含む場合と

l.Means士SEMof3samplespergroups

含まない場合で変化した。この違いは血清中のホ
ルモンをはじめとするさまざまな生理活性物質の

影響によるものと推定している。試験試料がどの

Table6Effectofcaseintryptichydrolysateoncholes‑
terolsynthesisinHepG2cells.(3hoursincu‑
bation)

ように活性を発現するかを考える際に，血清の存

controlcaseintryptichydrolysate

在は考慮に入れる必要があろう。

}7021±1266

％

100

１２

実験2で,HepG2におけるコレステロール合

dpm

成は，24時間培養では無添加群と比べ，カゼイン
トリプシン加水分解物群で増加傾向を示した。

30651±1797＊
83

Means±SEMof3samplespel‑groups
Statisticalsignificancecomparedwithcontrol
(*p<0.05)

12時間培養では対照群と比較してカゼイントリプ

HepG2を用いたが，以前私は，ラットの初代培

シン加水分解物群で有意な減少を示した。6時間

養肝細胞を用いてコレステロール合成能を検討し

培養では無添加群と比べ，カゼイントリプシン

た結果#)と比較すると，単純な比較は困難ではあ

加水分解物群ではほぼ同様の値を示した。3時間

るが，コレステロール合成能は両者ともほぼ同様

培養では対照群と比較して，カゼイントリプシン

のレベルであった。従って，今回の培養条件で

加水分解物群で有意な減少を示した。(Table3

HepG2は，コレステロール合成能の評価系とし

Table6)。これらの結果から，カゼイントリプシ

て充分に活用可能であると考えられた。

ン加水分解物のコレステロール合成能に対する影

これまで，私は牛肉ペプチド，牛心臓ペプチド，

響は，培養条件により変化する可能性が示唆され

牛レバーペプチドなどが，血清や肝臓コレステロ

た。また，今回はヒト肝ガン由来株化細胞である

ールの低下作用などのコレステロール代謝改善作
用を発現することを発見している5 7)ことから，

Table3Effectofcaseintr)･ptichydr()lysateoncholes‑
teroIsvnthesisillllepG2cells．(24hours
incubation)

ル低下作用を発揮する活性ペプチドの同定に，今

colltroIcaseintryptichydrolysate
7742±

dpm

1149()±

1
0
(
）

％

今後は，これらの牛由来成分などのコレステロー

148

回開発した実験系が活用できるものと期待してい
る。

1．Means±SEMof3samplespergroups

4．要約
Table4EffectofcaseintrvptichvdroIvsateoncholes‑

teroIsvnthesisinl‑IepG2cells･(12hoursincu‑

畜産物由来の生理活性ペプチドの発見とそれら

batio,')

別

㈹

％

︻Ｄ
へ︒

dpm

＋

１

７
３

０
１
５

controlcaseintl‑yptichydrolysate
7074士1493＊

の高度有効利用をめざすために，ヒト培養肝細胞
であるHepG2を活用して，畜産物（特に食肉）

から生理活性ペプチドなどを発見するための条件

51

１１Ａ︑／︼

Means=tSEMof3samplespel‑groups
Statisticalsignificancecomparedwithcontrol

を設定しました。特に今回の研究では，コレステ

(*p<0.05)

ロール代謝系の評価に注目しました。すなわち，

© The Ito Foundation


肝臓機能を発現するヒト肝由来培養細胞HepG2を活用したコレステロール合成やコレステロール分泌に関連するアポリポタンパク質A-IやBを調節するペプチドの探索評価系の確立を行いました。具体的には、HepG2培養細胞を培養し、培養液に、さまざまな生理工活性ペプチドがすでに発見されている畜産物であるカゼイントリプシン加水分解物を添加して、コレステロール合成やコレステロール分泌に関連するアポリポタンパク質A-IやBの分泌量に対する影響を検討しました。その結果、HepG2培養細胞を活用したコレステロール合成能の評価系を構築するとともに、HepG2培養細胞のコレステロールの分泌と密接に関連するアポリポタンパク質A-IやBに対する評価系の構築も併せて行うことができました。以上の結果から、これらの手法を用いて、牛肉由来成分などの畜産物のコレステロール代謝改善作用に関与する活性ペプチドを評価できる可能性が示唆された。

文献
1) 戸塚 譲, 上野川修一, 日本畜産学会報, 63, 867-877 (1992)
2) 長岡 利: 日本栄養・食糧学会誌, 49, 303 (1996)
6) 長岡 利: 食肉に関する助成研究調査成果報告書, 378 (1999)
7) 長岡 利: 食肉に関する助成研究調査成果報告書, 294 (2000)
Study on the Effect of Bovine Costal Cartilage Extract on Skin Condition

Shigeharu Fukunaga, Fumio Nakamura and *Ken Sekiguchi
(Graduate School of Agriculture, Hokkaido University and *Itoham Foods Inc.)

Effect of the bovine costal cartilage extract and bovine bone extract as a functional foodstuff on the rat skin condition was studied with histochemically. The rats in the telogen phase (resting phase of hair cycle, 8 weeks old) were orally administered 200 mg of bone or cartilage extracts once per day. This oral administration was continued to the end of experiment. After one week administration (9 weeks old), rats were plucked back hairs under anesthetization in which induced anagen (hair growth phase). The rats were killed after plucking days at 0, 3, 7, 10 and 14 and then collected back skin.

With the progress of hair growth, although the rats that administrated cartilage extract showed almost same histological changes as seen in controls, but in dermal papilla there was strong staining intensity observed. This indicated much more condensation of proteoglycans and suggested more active hair production be occurred. On the other hand, the rats that bone extract administrated were tends to delay of hair growth. From the results of scanning electron microscopic observation, It was suggested that bone and cartilage extract administration contributed to make a resistibility to plucking treatment in which means skin surface damage. These results suggested that orally administrated bovine costal cartilage extract was effective for hair production or skin reconstruction during hair cycle i.e. skin conditioning.
周期は新規毛および毛包が成長する活性期、成長が停止し毛包が退縮する退行期、毛包を含めた皮膚全体が休眠状態にある休止期の3つのステージからなる。毛周期の進行に伴い、皮膚の肥厚、皮膚組織内での毛包の伸長と退縮さらにメラニン色素合成も同時に起こり、皮膚組織は全体が大きく変化する。マウスやラットでは休止期毛包を強制的に除毛処理を行うことで活性期を誘導し、新しく毛の産生がはじまることが知られており、実験系として利用されている。

本研究では、除毛処理により活性期を誘導し皮膚組織が最も大きく変動する時期に、骨および軟骨抽出エキスを経口投与し皮膚組織の変化にどのように影響を与えるかを検討した。

2. 材料および方法

毛周期で休止期にあたる8週齢のWister系オーストラットを3群に分け、対照群、牛骨抽出エキス投与群（ゼラチン群）、牛骨軟骨抽出エキス投与群（ムコゲン群）とした。水および市販の飼料を自由摂取したほかに、対照群にはPBS、ゼラチン群は20％ゼラチン溶液、ムコゲン群には20％ムコゲン溶液をゾンデを用いて経口投与した。投与量は1日1回、1mlとした。経口投与開始後、1週間目（9週齢）に麻酔下で、加熱した蜜蝋と松脂の混合物（1:1）を背部皮膚に塗布し、固化した後にこれを引き剥がす除毛処理を行い、活性期を誘導した。除毛処理後も経口投与は継続して行い、除毛部位の肉眼観察を行うとともに、除毛後0、3、7、10および14日目にラットをと殺して背部皮膚のサンプリングを行った。採取した背部皮膚片から凍結切片を作成し、ヘマトキシリン・エオシン（H・E）染色、トルイジンブルーおよびアルシアンブルー染色を行い、光学顕微鏡による形態観察を行った。また一部はグルタルアルデヒド前固定の後、オスミウム後固定とタンニン酸による染色を行い、皮膚表面の変化を走査型電子顕微鏡により観察した。

3. 結果

3.1 光学顕微鏡観察

対照群皮膚組織のH・E染色像から、除毛処理直後（0日目）の休止期皮膚では、皮膚は薄く毛包は退縮しており、除毛処理により毛包中に毛は存在していないことが確認された（Fig.1A）。除毛後3日目には毛包基部で新たに形成された毛乳頭・毛球が観察され、毛包の伸長が開始されていた。7日目以降、皮膚の肥厚と毛包の著しい伸長が観察され、毛包内では太く毛髓質を持った毛が成長しているのが観察された。14日目にはやや真皮層の厚みが減る傾向にあり、一部毛乳頭が縮小している毛包も観察された（Fig.1B～E）。ムコゲンでは対照群とほぼ同様の形態変化が観察された。しかしゼラチン群では除毛処理後7日目までは他の2群に比べて毛包の伸長が遅くなっており、14日目になって他の群と同程度となった（Fig.1F）。またゼラチン群では真皮層の厚さが除毛処理後10日目、14日目で他の群よりもやや厚くなっていることが観察された。

トルイジンブルー染色より、プロテオグリカンを含む領域が染色された。休止期である除毛処理直後では真皮層が染色されたが、活性期に誘導され毛包が伸長するのに伴い真皮層の染色は弱まり、毛包基部の毛乳頭が強く染色されるようくなった（Fig.2A～C）。対照群では除毛処理後3～7日目で、ゼラチン群では7～14日目またムコゲン群では3～10日目の皮膚組織で毛乳頭が染色された。対照群では除毛処理後7日目、ゼラチン群では14日目またムコゲン群では7日目で最も強く毛乳頭は染色されており、特にムコゲン群では他の2群に比べより強く染色されていることが観察された。アルシアンブルー染色においてもトルイ
Fig. 1 Hair growth–related changes of rat skin stained with hematoxylin and eosin.
Rat skin sections of control group after plucking at 0 (A), 3 (B), 7 (C), 10 (D), 14 (E) days and 7 days after plucking of bone extract administrated group (F). ×50.
Fig. 2 Rat skin section stained with toluidin blue (A～C) and alcian blue (D～F) at 7 days after plucking. A and D: control group, B and E: bone extract administrated group, C and F: cartilage extract administrated group. ×120.

ことが観察されたが、皮膚表面は表皮細胞特有の敷石状を呈しており、除毛はされているが表皮層はすべてが剝離していないことが観察された（Fig. 3A～C）。処理後3日目以降14日目までに徐々に回復していく様子が観察された。各群間による回復の程度に相違は認められなかった。除毛処理直後の皮膚表面像を比較すると、対照群に比べムコゲン群が、さらにムコゲン群よりもザラチン群の皮膚表面が滑らかであることが観察された（Fig. 3）。

4. 考察

ラットやマウスでは、除毛処理により毛包は休止期から活性期へと移行することが知られているが、本実験でも除毛処理後の皮膚組織の变化から活性期に誘導されていることが確認され、ラットでは除毛処理後10～14日目までが活性期であり、その後退行期へと移行していくものと推察された。活性期の誘導から約2週間の間、新規毛の産生が行われているものと考えられる。肋軟骨抽出エキス投与群と対照群との間に顕著な形態学上の差異
染色による毛乳頭部位での染色像の結果からも推測された。毛乳頭は活性期の間に実際に毛生産を担当する部位であり、活性期特異的に毛乳頭で発現するプロテオグリカンが存在するという報告例もあるう。肋軟骨抽出エキス投与群において、毛乳頭が染色された期間および染色強度が最も長くかつ強かったことは、存在するプロテオグリカン量が多いものと推察された。このことから肋軟骨抽出エキスの投与により、毛乳頭へのプロテオグリカンの供給が促進され、より活発な毛生産が行われているものと考えられる。一方、骨抽出エキス投与群では対照群および肋軟骨抽出エキス投与群に比べ、除毛処理による活性期への移行が遅延されていることが示唆され、また真皮層はより肥厚する傾向にあった。ゼラチンの投与により産生される毛が太くなるという報告例もあるが、本実験では毛の分析までは行っておらず、今後、除毛処理により新規に産生された毛も含めた詳細な分析も行うことにより、骨および肋軟骨エキス投与の影響を検討する必要があると考えられる。

走査型電子顕微鏡による除毛処理直後の皮膚表面の観察から、除毛処理という皮膚にとって損傷に対して、軟骨および骨抽出エキスの投与は抵抗性を付与しているものと推察された。その一方で、除毛処理後の皮膚表面像の経時的な変化から、表皮の更新に対しては影響を及ぼしていないものと考えられる。

本実験では実験系として標準飼料を自由摂取させたうえで、軟骨抽出エキスを経口投与したが、ラットの毛生産に対して促進的な効果をもたらすものと推測された。一方、摂取するタンパク質あるいはエネルギーを制限することで皮膚中のプロテオグリカン量が低下するという報告例も、低タンパク質飼料を給餌したうえで、不足分を骨あるいは軟骨抽出エキスにより補完するような実験系を組むことで、より顕著な影響が出るものと
考えられる。除毛処理により一様性を持った活性期を誘導し、皮膚組織全体にわたって再構築が行われる時期に試料を経口投与することは、実験系として極めて有効なものと考えられ、今後、各種皮膚構成成分の変化や質的変動を検討することで、骨あるいは軟骨抽出エキスの摂取による皮膚組織へ及ぼす影響が明らかになるものと考えられる。

5. 要 約

除毛処理により活性期を誘導したラット皮膚組織における、牛肋軟骨抽出エキスと牛骨抽出エキスの経口投与の影響について、組織学的分析により検討した。牛肋軟骨抽出エキス投与群では対照群に比べ、毛乳頭へのプロテオグリカンの供給が促進されより活発な毛生産が行われていることが示唆された。一方、牛骨抽出エキス投与群では、活性期の進行が遅延される傾向にあった。また除毛処理による皮膚表面の損傷に対しては、骨および軟骨抽出エキス投与は抵抗性を付与していることが示唆された。このことは、毛の産生と皮膚の再構築において軟骨抽出エキスの有効性を示唆するものと考えられる。

文 献
Direct Sale of Tankaku Beeves from Farms and an Activation in Hilly and Mountainous Areas

Yasuyuki Shikata and Shigeru Oki
(School of Veterinary Medicine, Azabu University)

Tankaku cattle are kept in hilly and mountainous areas, especially Iwate prefecture and Aomori prefecture of Tohoku district. They contribute the management of natural resources and the landscape, through leaving them to graze on the hillside in the season from spring to autumn. But farmers of breeding and fattening Tankaku cattle decreased remarkably every year, because of falling the price of Tankaku calves and carcase fleshes. Grading system of a beef quality in the market is not suitable for Tankaku cattle. Direct sale of Tankaku beoves from farms is the only way to keep them. Main partners of direct sale are buying groups of organic farming products and Co-ops. A department store Isetan in Shinjuku has a special place at a meat corner to sell Tankaku beoves of Aomori prefecture. It is important for general consumers to buy Tankaku beoves and to estimate the true value. We must consider the roles of keeping Tankaku cattle to activate hilly and mountainous areas. It is necessary for consumers to change the attaching too much importance to Wagyu black cattle and the fat-marbled beef. Many farmers wish to receive the direct payment per cattle for the compensation of a handicap at hilly and mountainous areas. Only the fattening farms participate these direct sale, but breeding farms have nothing to do with it. As to the calf price their interests between fattening farms and breeding farms conflict. A keeping of Tankaku cattle and a activation in hilly and mountainous areas depend on a combination of breeding and fattening in a same farm. Some farmers have an interest in so-called green tourism and wish to stay travelers at farmer’s houses. Politik schuld take the necessary measures to support them.

1. 目的

短角牛（日本短角種）は東北の岩手県と青森県を中心とした限られた地域での中山間地域において飼養されている。短角牛は牛肉輸入自由化以後、黒毛和種に対して赤身肉であることや変色しやすいことなどから、脂肪交雑を重視する市場での評価が低く、子牛価格、枝肉価格とも低迷し、飼養戸数、頭数ともに減少した。短角牛は特に、夏冬の冬場式により中山間地域の資源管理、国土保全に適しており、中山間地域の活性化のために維持していかなければならない。市場評価の低い短角牛にとっては、産直が生き残る唯一の道である。産直の形態は都市住民と生産者との交流を通じて由来の明確な健全な牛肉を流通させるとともに、イベント等によってグリーンツーリズムの機会を与え
短角牛肉の産直と中山間地域の活性化

ている。本研究の目的は、中山間地域の活性化のために、短角牛肉の産直はどうあるべきかについて岩手県と青森県での調査によって検討する。

2. 方 法

全国の短角牛飼養状況を把握するために、農水省関係の統計書・資料の収集に加えて県段階での統計・資料を収集した。短角牛の繁殖・肥育が行われている岩手県と青森県の中で、特に繁殖・肥育が盛んな町村を 3 か所、また、短角牛の肥育のみである、有機農産物の購入団体（らでいっしゅほうや）と契約し、肥育を行っている北海道の積丹と知床の 2 か所を選定し、短角牛の飼養および産直の状況を調査した。次に、消費者サイドから産直を調べるために、短角牛肉を取り扱っている生協としていたたまコーポとコーポこうべ、同じく有機農産物の購入団体として、「大地を守る会」と「らでいっしゅほうや」、さらに産直ではあるが一般消費者を販売対象とするデパートの伊勢丹新宿店、湘南びゅあ（神奈川県平塚市）などの担当者やバイヤーに対して現在の産直の状況と今後の展望等についてヒアリングを実施した。生産者（繁殖、肥育）ならびに消費者（生協その他の利用者）に対してはアンケート調査を行い、中山間地域での短角牛飼養の意義と今後の方向性、ならびに短角牛肉の評価と今後の消費意向等を把握した。

3. 結果と考察

3.1 全国の飼養状況

全国の日本短角種の飼養頭数は平成11年で繁殖牛が8,047頭、肥育牛が6,491頭であり、平成5年に比べて半分以下になっている。県別にみると平成11年で岩手県は繁殖牛シェアが56%、肥育牛のシェアが42.5%でどちらも第1位である。他県では青森県が平成9年までは繁殖牛、肥育牛ともに2位であったが、平成10年からは北海道が繁殖牛において第2位となっている。肥育牛に関しては青森県が第2位で北海道が第3位である。

本稿は短角牛肉の産直による中山間地域の活性化を課題としているので、以下では地域として岩手県と青森県をとりあげて論じる。

3.2 岩手県における飼養状況と価格の推移

岩手県経済連秋市場における日本短角種の子牛価格は平成8年で166,021円と高かったが、それ以後急落し、平成11年には65,132円になっている。それに対して、黒毛和種との交雑種の場合、平成8年は189,722円、平成11年は139,238円であり、その価格差は平成8年の23,701円から平成11年には74,106円と広がっている。その結果、純種牛の上場頭数は平成8年で2,697頭、平成11年で1,637頭と減少しているのに対して、交雑種は、平成8年の241頭から平成11年の635頭に増加し、全上場頭数に対する交雑種の割合は平成8年の8.2%から平成11年の27.9%になった。

肥育牛の枝肉kg当たり価格は、短角平均で平成3年度は1,043円、8年度は977円、11年度は814円であり、これは乳雄（B － 3）クラスで推移している。

このように日本短角種は子牛価格および枝肉価格ともに低迷し、繁殖農家と肥育農家が減少し、飼養頭数は平成3年に対して平成12年繁殖牛で39.3%、肥育牛で55.3%になっている（岩手県農政部資料より）。

3.3 岩手県岩泉町における短角牛の飼養と産直の取り組み

岩泉町は盛岡市の東方90kmほどの北上山系の東部に位置し、標高1,000mクラスの山々に囲まれた山間地域である。広大な山林を利用した短角牛飼養は古くから行われていて、日本短角種発祥の地と言われている。

岩泉町での産直の取り組みは昭和57年頃に始ま

© The Ito Foundation
った。さいたまコープとの産直は昭和63年からで、
国の補助事業である「肉用牛振興総合バイロッ
ト事業」の導入が契機となっている。この事業は、
さいたまコープ、国、岩手県、岩泉町、岩泉農協
の5者が協力して、それぞれ、1/3、1/3、1/9、
1/9の割合で基金（45,000千円）をつくり、
それを短角牛の繁殖や育肥を行う農家への低利融
資や消費者への牛肉の安定的供給に役立っている。

さいたまコープとの産直によって、生協組合員
の家族が夏休みなどに産地を訪問したり、逆に産
地の中学生が修学旅行でさいたまコープを訪問し
たりしてお互いの交流が行われている。

また、地場消費拡大のために平成6年7月より
農協が主体となって、県内を中心に短角牛肉直
販のための会員制度をスタートさせた。県庁職員
2,500人うち500人が会員になっている。さらに、
学校給食やホテルなどへの販売や国道にある「道
の駅」で短角牛肉を使ったステーキ、焼き肉、牛
丼などの提供で消費の拡大につなげている。

3.5 岩手県岩手郡における短角牛の飼育と産
直の取り組み

岩手郡は岩手県の北西部に位置し、町の中央を
奥羽山脈が南北に走っている。基幹産業はリンゴ
の花と畜産で、短角牛が畜産のメインになっている。

平成12年で繁殖農家が78戸、肥育農家が2戸で、
頭数は繁殖牛が473頭、肥育牛が169頭である。昭
和62年頃から行われていた首都圏の産直のメイン
になっていたスーパーの「いなげや」への出荷が
平成10年3月にストップしたので、これが子牛価
格の低落に結びつき、販路の確保とともに農家経
営を困難にさせている。

安田町では、繁殖牛の管理経費を低減させるた
めに、平成5年に地域畜産活性化総合対策事業に
より新町牧野組合で100頭規模の共同管理舎をつ
くり、飼育期の世話を1人で行っている。そして、
牛にオーナー制度を導入し、無家畜農家や会社社
店主、会社の経営者などがオーナーになって短
角牛の減少を防いでいる。最初は、25頭しか導入
されなかったが、その後は増加し、現在は130頭
ほどになっている。いなげやとの産直の中止もあり、
黒毛和種との交雑種が増えている。

山形市は北上山地の北端に位置し、村の総面積
のうち95%が森林という典型的な山間地であり、
その林野を利用して古くから短角牛の子牛生産が
行われてきた。昭和52年に肉牛生産農地信用事業
を導入して農協直営の育肥センター（現在はなくな
った）が造られたのを契機にして、本格的な肥
育が始まった。最初は出荷頭数が少なく、先行き
困難な状況であったが、昭和56年から「大地を守
る会」（本部東京）との産直が始まり今日に至って
いる。当初は子牛価格を20万円とし、周年出荷体
制を実施していくため、枝肉 kg当たり1,400
円が必要との考えで産直事業が始まった。その年
の冬の出荷は3頭であったが、平成12年には359
頭が取り引きされている。

平成元年の繁殖農家は213戸、繁殖牛は990頭で
あったのが、平成12年にはそれぞれ85戸と564頭
になっている。また、平成元年に29戸あった肥育
農家は平成12年には23戸になり、肥育販売頭数は
656頭から359頭に減少している。しかし産直販売
頭数は平成元年の224頭から平成12年の359頭に
増加している。平成9年以降は肥育販売頭数のう
ちのすべてが産直販売になり、「大地を守る会」
とのつながりでは、短角牛の飼育は存続しない。

取引価格の決定は平成6年8月までは枝肉重量
と皮下脂肪厚によって3段階（特A、A、B）に
分けて、それぞれkg当たり1,450円、1,400円、
1,350円にしていた。平成6年9月から平成9年
3月までは枝肉規格（A3〜C1）によって、そして平成9年4月から現在までは精肉歩留まりの基準で17段階に分ける。現在の歩留まりの平均が45％前後と悪くなっているので、枝肉kg当たりの産直取引平均価格は平成9年の1,290円から平成12年では1,155円になっている。

また、大地を守る会では平成10年から国産の飼料のみで育した短角牛肉を「That's国産牛」と名づけて会員に販売している。肥育農家からは枝肉kg当たり1,500円で通常のものより高く購入している。平成11年からは国産の飼料に加えて2シーズン放牧したものに限定し、10戸50頭ほどが出荷された。

3.6 青森県における短角牛飼養と産直の取り組み

青森県における平成12年の短角牛飼養農家は237戸で頭数は1,209頭、肥育農家は52戸で頭数は926頭であり、いずれも戸数、頭数ともに減少している（青森県畜産課資料より）。

肥育の出荷頭数は年間600頭程度であるが、そのうち主な産直販売としては2つの経路がある。1つは青森市で生産されたものは「八甲田牛」という銘柄で県内に販売され、もう1つは七戸町で生産されたものは「あおもり短角牛」という銘柄で主に首都圏に販売される。八甲田牛は、八甲田牛消費拡大協議会（東青森畜産協）が小泉ミート㈱、十和田ミート㈱に出荷し、そこから県内の生協や小売店、外食産業等に月10頭が流通している。あおもり短角牛は、日本短角種畜産協議会（七戸畜産協）が伊藤ハム（宮城県）を通じてデパートの伊勢丹新宿店に月3頭が、そして小泉ミート（部分肉加工）を通じて神奈川県平塚市にある湘南ぴゅあ㈱に月8頭が出荷される。湘南ぴゅあは中ヨーロッパ母豚200頭の一貫経営の養豚企業で無添加ハム・ソーセージの加工を行っている。

湘南ぴゅあの店でも短角牛肉を販売しているが、多くは湘南ぴゅあで整形した後、有機農産物卸売会社の夢市場㈱に販売し、そこから有機農産物の宅配会社である「にんじんCLUB」の会員（東京500名、名古屋2,000名）に流通していく。それ以外に、湘南ぴゅあは、ばら広場、ナチュラルハウス、F & Fなどの有機農産物・自然食品の販売店への独自の流通ルートを持っている。

生産者からの購入価格は、伊勢丹では枝肉から脱骨整形後の部分肉歩留まりを枝肉kg当たりの価格を決めている。湘南ぴゅあでは、部分肉歩留まりにバラ肉の枝肉歩留まりを考慮して部分肉単価が決める。結果として、枝肉kg当たりの単価では伊勢丹の方が高くなっているが（湘南ぴゅあで750円前後）生産者の方ではプール計算を行っていて、伊勢丹、湘南ぴゅあの両者で産直を支えている。

3.7 農家の短角牛飼養と中山間地域活性化に関する考え方

農家は今後の短角牛飼養に対してどのような意向であるのか、そして中山間地域活性化に対してどのように考えを持っているのかを調べるために、岩手県の安代町と岩泉町の短角牛飼養農家を対象にアンケート調査を行った。アンケート用紙は役場と農協を通じて対象農家のすべてに配布したところ、安代町では36％、岩泉町では22％の回収率であった。以下調査結果の要約を行う。

短角牛の飼養を探求しようとする農家は安代町で6％、岩泉町で10％ときわめて少ない。拡大しない理由では「価格が安いいや」「後継者がいない」「労力不足」という回答が多かった。中山間地域への直接補償では「牛1頭当たりへの補償」を希望する農家が安代町で53％、岩泉町で41％と最も多く、グリーンツーリズムでの家への宿泊を可能と答えた農家は安代町で28％、岩泉町で21％であったが、提供し得ないとした農家の理由は、両町とも「宿泊する部屋や施設が不十分」
という回答が最も多く、これらの課題の克服と支援が必要である。1)

4. 要約

短角牛は自然環境の保全や粗飼料中心によるわが国の食料自給率の向上という役割があり、中山間地域の活性化のためにも維持していかなければならない。

短角牛肉の産直販売の中心は有機農産物の購入団体、生協であるが、消費の拡大のためには一般的な消費者を対象にした宣伝と消費者の黒毛和種、霜降り牛肉の志向偏重を改める必要がある。消費者の食味調査では、黒毛和種に劣るものの中、輸入牛肉よりも高い評価が得られている。

産地においては、肥育農家と繁殖農家の利害は一致しないので、経営内での一貫生産を推進していく一方で、短角牛の飼養でオーナー制などの導入による共同飼育管理で合理化を行っていくことも施策上重要である。また、都市との交流でグリーンツーリズムに対する支援も必要である。

文献
1) 四方康行、農業経営研究 中山間地域における短角牛飼養、38-1, 111-116, 2000
畜産における有機性地域資源の循環利用システムの構築

System Construction for Recycling Use of Organic Regional Resources in Livestock Industry

Satoshi Kai (Faculty of Agriculture, Kyushu University)

The volume of food waste created by our lifestyles is constantly increasing. We should deal with this problem and meet the demand of society. General amount of food waste in Japan is 19.4 million tons, of which only 9% is recycled as an animal feed or organic fertilizer.

To cope with large volumes and various kinds of food waste, we consider waste recycling systems that recycle organic regional resources in livestock industry efficiently.

The following results are obtained from the analyses in recycling systems of organic regional resources in livestock industry.

1. 研究目的

本稿は、①循環型社会形成の推進の動向、②食品産業廃棄物の飼料化の要請、③醤油産業と焼酎産業の差し迫った粕の畜産経営での利用の必要性等の社会的背景を踏まえ、また、④我々が国の飼料自給率の向上も含めず、さらに、①宮崎県と大分県における醤油メーカー、焼酎メーカーから排出される粕の飼料化の実態、②それを飼料として利用している畜産経営の実態を調査し、③リサイクル事業の定着条件を検討して、④食品産業と畜産経営の連携をも通じた地域経済の活性化について考察するのが目的である。
2. 醤油メーカーの醤油粕リサイクル事業の展開

2.1 我が国の醤油の消費量と醤油粕処理の問題点

我が国の醤油の消費量をまず検討する。図 1 に全国の年別の醤油出荷量と一人当たり消費量を示す。醤油は伝統的な調味料であるためその製造の歴史は古く、出荷量は昭和48年（1973年）の1,294千キロリットル（一人当たり消費量11.9キロリットル）を最高にし、その後は減少の傾向である。

図 2 では、醤油の出荷量には季節性があることが示されている。6月と年末に集中して出荷されていることが分かる。

図 3 で、醤油の製造工程を示す。原料として大豆、小麦、種類が用いられ、製造工程において食塩と水が加えられる。この製造工程において、廃棄物は大豆を蒸すときに発生する蒸煮排水と圧搾工程後の醤油粕である。また、原料の洗浄の際には洗浄排水も多量に発生する（羽野忠、中村和憲「食品産業におけるゼロエミッション化と物質フローの解析—醤油製造工程におけるゼロエミッション化—」より）。

羽野、中村は排水については水利用システムを見直すことでの使用量の低減を提案し、醤油粕については再利用の促進を提案している。醤油粕の利用方法としては①飼料、②燃料をあげているが、①については輸入配合飼料の低減化、高塩分濃度、畜産農家の減少、②については高塩分濃度のために炉壁が痛みやすい、ダイオキシンの発生の懸念、を問題視している。

2.2 大分県における醤油産業の構造

大分県には、2つの醤油協業組合がある。大分醤油協業組合と二豊醤油協業組合がそれぞれあり、両者の工場が同じ大分県臼杵市にあり、生産規模はともに九州を代表する大企業である。最大醤油であるフランデーキン醤油株式会社と富士農醤油株式会社の販売数は、それぞれの組合の生産量に占める割合が非常に高く、実質的に組合の意思決定に大きな役割を果たしているといえる（表1）。

![資料: http://www.soysauce.or.jp/11.htmlより作成。](http://www.soysauce.or.jp/11.html)

図 1 年別醤油出荷量と一人当たり消費量
図2 1999年、2000年の月別醤油出荷量

表1 大分醤油協業組合と二豊醤油協業組合の組合概要

<table>
<thead>
<tr>
<th></th>
<th>大分醤油協業組合</th>
<th>二豊醤油協業組合</th>
</tr>
</thead>
<tbody>
<tr>
<td>加盟社数</td>
<td>26社</td>
<td>39社</td>
</tr>
<tr>
<td>従業員数</td>
<td>100名</td>
<td>54名</td>
</tr>
<tr>
<td>生産量</td>
<td>約24,000キロリットル</td>
<td>約17,000キロリットル</td>
</tr>
</tbody>
</table>

組合最大手の会社概要

<table>
<thead>
<tr>
<th></th>
<th>フンードーキン醤油株式会社</th>
<th>富士甚醤油株式会社</th>
</tr>
</thead>
<tbody>
<tr>
<td>販売数</td>
<td>約19,200キロリットル</td>
<td>約16,150キロリットル</td>
</tr>
<tr>
<td>資本金</td>
<td>3,000万円</td>
<td>3,375万円</td>
</tr>
<tr>
<td>従業員数</td>
<td>150名</td>
<td>300名</td>
</tr>
</tbody>
</table>

資料：大分醤油協業組合、二豊醤油協業組合の資料とヒヤリング調査の内容をもとに作成。

2.3 大分醤油協業組合の醤油粕リサイクルの現状

大分醤油協業組合では、年間約1,424トンの醤油粕が発生する。九州は畜産の盛んな地域であることから、醤油粕には飼料としての需要があり、周年引取りを条件として県内の牧場5施設、同じく県内の飼料会社1社、福岡県の飼料会社1社に全量を販売している。

販売方法は工場での引取りとなっており、1キログラム当たり1円の価格で販売している。飼料会社には1袋500キログラム入りの大袋、牧場には1袋10キログラム入りの小袋で引渡しを行っており、袋は無償で配布している。

蒸煮排水、洗浄排水に関しては、活性炭処理を行い、年間約2,409トン発生する汚泥を肥料として農家に無償で配布している。また、醤油粕が年間約5万リットル発生し、大分県内の化学工場で委託処理を行っている。

2.4 二豊醤油協業組合の醤油粕リサイクルの現状

二豊醤油協業組合では年間約1,200トンの醤油粕が発生している。以前は海洋投棄を行っていたが、現在は農家に全量を配布している。九州全域の農家からの問い合わせがあり、醤油粕に対する需要が過多の状態である。

現在は15戸の農家に配布しており、うち5戸が県外の農家（鹿児島県、宮崎県、長崎県）である。醤油粕は時間が経過するとかびが生えることから
工場に堆積することができないよう、計画的に引き取ってもらうようにしている。
引取りは工場で行い、袋は工場が無償で配布している。醤油粕の出荷状況としては、1袋500キログラム入りの袋が1日当たり10〜11袋出ていることになる。引取り量の多い農家は、鹿児島県A農家で1回の引取りで40袋を引き取る（A農家の場合は袋は農家の持込である）。また、大分県内のH牧場は月2、3回の引取りで1回当たり22〜23袋を引き取る。

蒸煮排水、洗浄排水は活性汚泥処理を行い、汚泥を農家に肥料として配布している。

2.5 産地間提携による有機性資源の有効利用
大分醤油協業組合と二豊醤油協業組合の事例は、近隣が産業の産地であることから発生する醤油粕に飼料としての需要があり、その処理に困ることもなく、農家のほうでも流通飼料の価格変動リスクを回避できるといった産地間提携がうまくいっ
ていたケースと理解される。
また、圧搾工程後の醗酵粕の水分含有率が27.2％であるため、醗酵粕がある程度の保存性を有するということも産地間提携の成功要因がある。
さらに、畜産家家戸数は減少の傾向であるが、1戸当たりの飼育頭数規模は拡大の傾向であることから、二豊醗酵協業組合の事例でみられたような引取り量の多い農家がある。そういった農家側の傾向を考慮すると、大豆醗酵協業組合、二豊醗酵協業組合にみられる醗酵会社の協業組合化は醗酵粕の運送コストを削減させているといえる。
また、醗酵粕は塩分を多く含むことから飼料配合を間違えると害を及ぼすため、成分表示、給餌指導、または販売後のアフターケアを行う体制を整えることが必要であろう。

3. 紹介メーカー・S 株式会社の焼酎粕リサイクル事業の展開

3.1 烧酎粕リサイクル事業の取り組み
S 社は、昭和58年の工場移転当時から焼酎粕をリサイクルさせるために、県内にある後述の有限会社H牧場と提携して一部の焼酎粕を飼料原料（濃縮処理した形態）として流通させていた。しかし、大半の焼酎粕は海洋投棄していた。

平成4年には、7年にロンドン条約により焼酎粕の海洋投棄が禁止される可能性があったので、本格的に焼酎粕のリサイクルシステムの開発に乗り出し、「ECO'95プロジェクト」を発足させた。焼酎粕を飼料として用いる際には、保存性を高め、飼料の配合を容易にするために、乾燥処理をする必要があるので、6年には乾燥設備を新設し、焼酎粕乾燥施設「エコフーズシステム」を確立した。

また、平成10年には乾燥処理施設に加え、新たな濃縮処理施設も導入し、濃縮処理能力を向上させた。さらに新たな商品開発に取り組むなどリサイクル商品の開発研究を継続中で、12年8月には海洋投棄を全廃する計画に至っている。

3.2 烧酎粕のリサイクルシステム
S 社では食用条大麦を利用して、焼酎を1日当たり1.8リットル瓶に換算して14万本生産している（年間300日で約4,200万本）。その焼酎の生産により、図4のように、年間約5万トン、1日当たり160～170トンの焼酎粕が発生している。
S 社の焼酎粕リサイクル処理法は乾燥処理法と濃
図5 S社の焼酎粕処理概要

絞処理法の2通りがある。処理加工された製品は、S社のリサイクル商品販売会社の株式会社SNを介して、現在では全量が後述の株式会社Hに販売され、有効利用されている。

図5に示すように、1日当たり160トン排出される焼酎粕は、80トンが乾燥処理法により8トンの乾燥飼料に製品化され、他の80トンの焼酎粕のうち40トンが13トンの3倍濃縮液に処理される。その乾燥飼料と濃縮液の合計の21トンが、株式会社Hに引き渡されている。乾燥飼料は濃縮液とともに商品として販売されるが、実質的には加工コストの負担の方が大きい。残る40トンの焼酎粕は産業廃棄物として処理費を払って引き取ってもらっているが、①セメント工場の冷却水、②排水処理場の栄養剤として利用される。また③一部は海洋投棄されており（平成12年8月には全廃）、④一部は新たな高付加価値商品開発に向けられていく。

乾燥処理に関しては、設備は平成6年に導入されたものと8年に増設されたものの2槽で行われ、1槽当たりの処理能力は1日当たり50トンである。この設備により80トンの焼酎粕がリサイクルされている。

乾燥飼料法をみると、まず、焼酎粕は水分調整と性状を均一化するために原液タンクへ送られる。次に処理を効率的に行うために「固液分離」を行う。以下、「放冷機」を通し、保存性を持たせるために大麦ヌカを加え、「粉碎機」、「製品サイロ」、「製袋機」の工程を経て、1袋15キログラム入りの飼料原料「麦酢源II」が完成する。麦酢源IIは1日当たり約530袋、重量で8トン生産する。

濃縮処理施設に関しては、平成9年に工事に着手し、10年から稼働している。この新しい処理施設は、1日当たり120トンの濃縮処理が可能である。以前の1日当たり約17トンの処理から、1日当たり80トンの焼酎粕が濃縮処理されるようになった。濃縮液の用途としては、酪農用飼料、有機質肥料、魚飼となっており、食品への加工も研究中である。

3.3 リサイクル商品の価格設定と事業の収益性

焼酎粕の段階で88.6%ある水分を5.2%にまで乾燥した麦酢源IIの成分をみると、ビール粕に比較して粗タンパクが多く含まれており、可消化養分総量（TDN）はビール粕と同等である。麦酢源IIの価格はTDNを基準に、他の飼料原料である大豆粕やビール粕の市場価格などを参考にして、1キログラム当たり10円（TDN1キログラム当たり15円）に設定されている。

施設投資の総額は6.6億円（10年間償却）であり、乾燥処理に要する総費用は焼酎粕1トン当たり約7,000円である。焼酎粕1トンから100キログ
ラムの麦酵源IIが生成され、約1,000円で販売されるので、焼酎粕1トンを乾燥処理することにより約6,000円の損失が発生していることになる。しかし、焼酎粕を海洋投棄するのにも1トン当たり約5,500円の費用がかかるので、実質的な負担増は焼酎粕1トン当たり500円である。これらのリサイクルに伴う経費は、事業本体の焼酎の製造販売部門でカバーされている。

一方、1日当たり40トンの焼酎粕が3倍に濃縮処理され、約13トンの原料原料が生成される。濃縮処理に要するコストは減価償却費も含めて焼酎粕1トン当たり約3,000円である。

S社のリサイクル事業に伴う経費は、本業の焼酎の製造販売部門で大半が負担されており、リサイクル事業が継続されていると言えよう。

4．S社供給の原料を加工利用している有限会社H牧場

4.1 S社供給の飼料原料をTMRに加工している株式会社H

大分県に住むH氏は、飼料流通販売会社の「株式会社H」の社長であり、また酪農経営を営む「有限会社H牧場」の代表でもある。H氏は昭和58年にS社の供給する焼酎粕を乳牛に給与し始めた。62年には有限会社H牧場にて飼料生産流通合理化事業を活用して、焼酎粕等の粕類をTMRに加工する工場を建設し、同時に飼料流通販売会社の「株式会社H」を設立した。H牧場ではH社に加工製造部門を委託している。

現在、H社はS社が供給する麦酵源IIと濃縮液を一元的に全量を引き受け、TMRに加工している。H社は、平成12年5月の場合、S社から供給される麦酵源IIを月間150トン、濃縮液を360トン仕入れている（これらの数量はS社の季節的稲作水準変動によって毎月若干変動する）。このうち、麦酵源IIの68トン、濃縮液の41トンをそれぞれ単味で酪農家などに販売している。

残りの麦酵源IIの月間82トン、濃縮液の319トンを主原料として、これに輸入牧草と福岡市内の食料品業から収集した有機性資源（ジェース粕、豆腐粕、カット野菜くずなど）を加えて、TMRを1日当たり60トン製造している。そのうちの32トンを親会社である有限会社H牧場に販売し、残りの28トンを他の酪農経営と繁殖牛経営に販売している。

TMRは10種類製造されている。販売先である酪農経営の粗飼料生産状況に合わせて搾乳牛用が4種類、乾乳牛用が2種類、育成牛用が2種類、肉用牛用が2種類ときめ細かな製品開発を行っている。このようにきめ細かな多種類の製品開発ができるのは、2つの要因が大きく影響している。第1は専門の家畜栄養コンサルタントと契約し、飼料設計を委託していること、第2は飼料原料を米国の栄養分析会社に国際宅急便で空輸し、2週間以内に結果を得て、畜種に合った適切な飼料設計が可能になっていることである。ちなみに、国内で栄養分析を依頼すると1〜2ヶ月を要し、分析項目が少なく、高価であるとH氏は指摘している。

飼料工場では7人の従業員と1人のパートが雇用されており、また、トラックの運転手6名が雇用され、原料の仕入と製品の輸送を担当している。この飼料工場は地域住民に雇用の場を提供している効果もある。

TMRの平均販売価格は1キログラム当たり運賃を含めて28円で、比較的価格が安いうちもあるが、発酵されたTMRは親会社であるH牧場で試験給与され、成績が実証された後に販売されるので、他の農家にも安心感を与えることができ、TMRの販売量が増加している。株式会社Hの経営は順調で、年間売上額は平成10年度が5.2億円、11年度が5.8億円になっている。もちろん、経営
は順当である。

4.2 TMR を利用して多頭化と高泌乳を達成している有限会社 H 牧場

H氏は、昭和42年に家業の酪農経営（経産牛20頭）に参画し、45年に結婚し、46年に後継者育成資金を活用して10頭の増頭を行った。その後の酪農経営の規模拡大過程は表 3 のとおりである。50年に農業構造改善事業を活用し、現在地に牧場を

移転し、これまでの「つなぎ方式」から「フリーストーク・ミルクファーム方式」へと転換して、飼養規模も60頭に拡大した。

移転地において粗飼料生産を試みたが、地方不足により十分な収穫が得られなかったため、52年からみかんジュース粕の利用を開始した。54年に

経営の法人化と複式簿記の記帳に取り組み、計画的な経営管理を行った。55年に粕類を利用した TMR の生産を開始し、コンプレートフィード技術を確立して、1頭当たりの乳量の向上に努めた。

平成 5 年から、子牛の付加価値を高めるため ET（受精卵移植）事業に取り組み、乳牛から子牛の生産を開始して所得の向上を図った。7年

には、フリーストーク方式から直下型換気扇を設置した屋内フリーバーン方式に飼養形態を変更し、500頭規模の畜舎を建設した。併せて20頭複列の

ミルクファームを導入して、1 日 3 回の搾乳作業はすべて15名のパート職業員に任せている。

11年には、和子牛の事故率低下と増体率の向上を目的に、自動化機能を追加してその改善を図っている。ちなみに、11年度の和子牛販売額は大分県第 1 位の 4,603 万円であった。

現在は経産牛 650 頭、未経牛 190頭、計 840頭

の国内第 2 位の酪農経営を営みながら、和牛のド

ナーを78頭、和子牛を150頭、F1を250頭の総計

1,318頭を飼養している。

1,300頭以上の牛を水田 60a、畑 410a の耕作

（および施設用地 350a）で飼養できるようになっ

たのは TMR の利用によるものである。また、

TMR の給与により、ポディコンディションの維

持や良好な飼育成績を達成している。1頭当たり

年間搾乳量は大分県平均が 7,583 キログラムであ

るのに対して H 牧場では 9,443 キログラムに達し

ている。

以上のように、TMR を利用することによって

多頭化と高泌乳を達成した結果、有限会社 H 牧場

の平成11年度の総販売額は 6 億 4,786 万円になり、

当期利益は順調に伸びている。

5. 食肉産業から畜産経営へのリサイクル事業

の定着条件と地域活性化

5.1 リサイクル事業の定着条件

①焼酎メーカー S 社のリサイクル商品は TMR

の中間原料であり、飼料製造販売会社に供給する

ことによって、必然的に排出される焼酎粕を処理

している。 S 社にとってリサイクル事業は不採算

部門であるが、引き取ってもらうことが不可欠で

あり、そのためには実需者である飼料製造者の要

望に応えた品質保証が継続取引の必要条件である。

②S 社のリサイクル事業の経費の大半は、本業

の焼酎の製造販売部門で負担されている。この事

例は、リサイクル事業の独立採算は短期的には達

成困難であるので、当面は本業部門からの支援が

不可欠であることを示している。しかし、長期的

には高付加価値商品の開発が望まれる。

③有限会社 H 牧場は、S 社から飼料原料の提供

を受け、それを子会社で TMR に加工し、それを

利用することによって多頭化と高泌乳達成し、

大きな利益を得ている。この成功を支えた牧場経

営の理念に注目する必要がある。H 牧場の社訓は

「共生」であり、また 4 つある行動指針の一つは

「未利用資源の有効利用を進めます。」で、他の

一つは「循環型農業を進め地域に貢献します。」

である。長年の H 氏夫妻の努力を支えた経営理念
は、先見性に富んだ今後の我が国の畜産経営のあり方に示唆を与えている。今後、「未利用資源の有効利用と循環型社会の構築」の理念が広く社会に受け入れられるよう啓発する必要がある。

④リサイクル事業が各地で展開するには、食品産業から排出される有機性資源の栄養成分を安価に、多項目にわたり、迅速に分析し、飼料設計サービスも行える「リサイクル支援センター」の設置が望まれる。

⑤産業廃棄物処理事業とリサイクル事業とは区
分し、リサイクル事業には公的支援をすることが循環型社会の構築には必要である。

5.2 食品産業と畜産経営との連携と地域活性化

食品産業は地域経済のなかで大きな比重を占めている。たとえば、九州では食品産業が全製造業出荷額の約20％（第1位）を占めており、その動向は地域経済や雇用情勢等に大きな影響を与える。だが、食品産業の一部からは有機性廃棄物が排出され、それを海洋投棄するなど海洋環境に負荷を与えている事実である。だが、平成13年からそれらが国際的に許されなくなり、陸上処理とリサイクルが不可欠となっている。

一方、畜産経営は就業者の高齢化などにより、ますます海外製品に依存する構造となっている。食品産業から排出される有機性資源を飼料として利用すれば、個別畜産経営にとっても、また、食品産業にとっても役に立つ。このように、食品産業部からの有機性資源のリサイクルは、地域の活性化と循環型社会の構築に貢献するので、一層の支援が望まれる。
The co-op expanded the organization and the amount of selling sharply through the 80s. However, although in the 90s the co-op members increased 1.5 times, the growth of the amount of sales is 1.23 times, the livestock product sales of the growth is 1.15 times, but co-op “sanchoku” supply is 1.53 times as many high growth.

The following things are raised as a feature of the co-op “sanchoku”.
(1) The co-op “sanchoku” supply is increasing through 90’s.
(2) The sanchoku ratio of a perishable food is high. Fruits and vegetables is 42.5%, livestock products is 45.0%.
(3) The feature of the 90s will be in stagnation of livestock product sales, and a rise of a sanchoku ratio.

Co-op sanchoku tackled as production of private-brand goods in a perishable food.

Co-op Sanchoku has developed utterly in response to a demand of the Consumer who thinks the safety of food as important.

Although the livestock product handling of a co-op had the large difference by the co-op, it was able to find out the following features about the store sales today.
(1) As for the handling situation of beef, an import rate has the variation from 5% to 30% or more.
(2) With pork, there are 5%-15% and little variation.
(3) In chicken, the ratio of chicken based on the ordinary breeding method is about 80 percent.

Since sanchoku of a livestock product has domestic most, the half of the domestic meat except import serves as the supply as sanchoku.

Then, according to the example of the joint purchase special co-op of a metropolitan area, a changes of co-op sanchoku in the 90s, are as follows
(1) The amount of selling will decrease the first half of the 90s at a peak, makes 96 or 97 years a bottom, and is leveling-off tendency after that.
(2) As for this, selling mark and the unit price are also interlocking.
(3) On the other hand, the number of members and the goods item are increasing and the goods item has increased 1.87 times.

That is, it is the basis of the depression of the second half of the 90s that it can be considering as the conclusion of this research, and it turns out that livestock product sale of a co-op is maintaining sales by the increase in an item of sanchoku.
1. 目 的

生活協同組合（生協）は、地域にある小売業の一種としてとらえることができる。しかし、小売業一般と比較したときに販売（供給）動向は、国産重視という点にその特徴がある。

一方、牛肉輸入自由化ならびにパブリック喫食後の不況の下で、生産構造、消費構造ともに大幅に変化してきている。生協は、70年代から80年代にかけて組織と事業を拡大してきたが、畜産物についての取り組みは、畜産物消費が増加する下で、比較的早くから独自商品の開発に力を入れてきていが、その生協も90年代の不況の下で業績を低迷させている。

すなわち、90年代に入って、生産も消費も流通もいままでの枠組みからの転換が迫られているといえる。

そこで、畜産物の消費動向の変化はどうとらえられ流通業としての販売戦略を組んでいけばいいのか、対産地との関係をどのように組み立てばいいのか等に関して、生協を事例に、その課題を明らかにすることを目的とする。

2. 方 法

まず、生協の80年代から90年代を通じた事業展開を簡単に紹介し、その意義や背景を示す（Table 1）。

次に、その下での生協の事業所の特色である「生協産直」について紹介し、その特徴と展開を説明する。さらに、生協事業において産直の占める意義や役割そして現状と課題を示す（Table 2, 3）。

そして、今日における生協の畜産物の取り扱い動向を、事例的にデータで示しながらその特徴を

Table 1 Retail sales of the Co-op

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Retail Sales</td>
<td>8595</td>
<td>14492</td>
<td>21145</td>
<td>25060</td>
<td>25275</td>
</tr>
<tr>
<td>Food goods</td>
<td>6199</td>
<td>10944</td>
<td>15579</td>
<td>18919</td>
<td>19602</td>
</tr>
<tr>
<td>Fruits & Vegetables</td>
<td>772</td>
<td>1207</td>
<td>1972</td>
<td>2352</td>
<td>2590</td>
</tr>
<tr>
<td>Seafood</td>
<td>813</td>
<td>1451</td>
<td>2144</td>
<td>2691</td>
<td>2612</td>
</tr>
<tr>
<td>Meats, milk etc</td>
<td>882</td>
<td>1575</td>
<td>2202</td>
<td>2415</td>
<td>2533</td>
</tr>
<tr>
<td>Delicatessen</td>
<td>537</td>
<td>2131</td>
<td>3732</td>
<td>4838</td>
<td>5255</td>
</tr>
<tr>
<td>Rice</td>
<td>-</td>
<td>854</td>
<td>1007</td>
<td>1084</td>
<td>854</td>
</tr>
</tbody>
</table>

Source: Japanese Consumers’ Co-operative Union “The business statistics of a co-op” (each fiscal year version)

Table 2 Co-op Sanchoku Supply

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Foodgoods turnover</td>
<td>4250.9</td>
<td>6890.3</td>
<td>14524.3</td>
<td>17104.8</td>
<td>17913.2</td>
</tr>
<tr>
<td>sanchoku</td>
<td>1378.4</td>
<td>1800.7</td>
<td>2571.4</td>
<td>3840.3</td>
<td>3938.9</td>
</tr>
<tr>
<td>%</td>
<td>30.5</td>
<td>26.1</td>
<td>17.7</td>
<td>22.5</td>
<td>22.0</td>
</tr>
<tr>
<td>Fruit & Vegetable turnover</td>
<td>608.2</td>
<td>837.7</td>
<td>1861.0</td>
<td>2254.2</td>
<td>2359.2</td>
</tr>
<tr>
<td>sanchoku</td>
<td>93.7</td>
<td>363.2</td>
<td>569.0</td>
<td>861.2</td>
<td>1003.3</td>
</tr>
<tr>
<td>%</td>
<td>15.4</td>
<td>43.4</td>
<td>30.6</td>
<td>38.2</td>
<td>42.5</td>
</tr>
<tr>
<td>Seafood turnover</td>
<td>435.5</td>
<td>949.0</td>
<td>1876.1</td>
<td>2240.3</td>
<td>2074.0</td>
</tr>
<tr>
<td>sanchoku</td>
<td>58.8</td>
<td>257.0</td>
<td>293.4</td>
<td>411.9</td>
<td>314.9</td>
</tr>
<tr>
<td>%</td>
<td>13.5</td>
<td>27.1</td>
<td>15.6</td>
<td>18.4</td>
<td>15.2</td>
</tr>
<tr>
<td>Livestock Products turnover</td>
<td>733.3</td>
<td>1115.6</td>
<td>1927.9</td>
<td>2228.5</td>
<td>1998.5</td>
</tr>
<tr>
<td>sanchoku</td>
<td>344.8</td>
<td>401.6</td>
<td>681.5</td>
<td>884.8</td>
<td>899.2</td>
</tr>
<tr>
<td>%</td>
<td>47.1</td>
<td>36.0</td>
<td>35.3</td>
<td>38.0</td>
<td>45.0</td>
</tr>
<tr>
<td>Rice turnover</td>
<td>379.7</td>
<td>508.3</td>
<td>719.6</td>
<td>955.1</td>
<td>858.7</td>
</tr>
<tr>
<td>sanchoku</td>
<td>304.9</td>
<td>198.3</td>
<td>254.4</td>
<td>374.1</td>
<td>674.1</td>
</tr>
<tr>
<td>%</td>
<td>79.7</td>
<td>39.0</td>
<td>35.4</td>
<td>37.6</td>
<td>78.5</td>
</tr>
</tbody>
</table>

Source: Japanese Consumers’ Co-operative Union “Co-op sanchoku Survey” (1st-5th)
Table 3 Sanchoku in some co-ops (1982) Unit : 100 million yen

<table>
<thead>
<tr>
<th></th>
<th>Fruit & Vegetables turnover</th>
<th>Livestock Products turnover</th>
<th>%</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miyagi co-op</td>
<td>41.6</td>
<td>3.6</td>
<td>9%</td>
<td>17.3</td>
</tr>
<tr>
<td>Saitama co-op</td>
<td>20.7</td>
<td>2.7</td>
<td>13%</td>
<td>24.4</td>
</tr>
<tr>
<td>Seikatsu club</td>
<td>0.8</td>
<td>0.8</td>
<td>100%</td>
<td>1.6</td>
</tr>
<tr>
<td>Touto co-op</td>
<td>2.9</td>
<td>2.1</td>
<td>72%</td>
<td>4.1</td>
</tr>
<tr>
<td>Kanagawa co-op</td>
<td>75.0</td>
<td>15.3</td>
<td>20%</td>
<td>87.3</td>
</tr>
<tr>
<td>Meikin co-op</td>
<td>14.0</td>
<td>5.5</td>
<td>39%</td>
<td>24.1</td>
</tr>
<tr>
<td>Kyoto co-op</td>
<td>19.7</td>
<td>3.9</td>
<td>20%</td>
<td>36.3</td>
</tr>
<tr>
<td>Oosaka izumu</td>
<td>3.0</td>
<td>1.4</td>
<td>47%</td>
<td>15.9</td>
</tr>
<tr>
<td>Nadakoube co-op</td>
<td>177.8</td>
<td>21.6</td>
<td>12%</td>
<td>273.6</td>
</tr>
<tr>
<td>Okayama co-op</td>
<td>1.0</td>
<td>0.8</td>
<td>80%</td>
<td>3.8</td>
</tr>
<tr>
<td>Kagoshima co-op</td>
<td>3.8</td>
<td>0.3</td>
<td>8%</td>
<td>5.9</td>
</tr>
<tr>
<td>Total</td>
<td>360.3</td>
<td>58.0</td>
<td>16%</td>
<td>515.3</td>
</tr>
<tr>
<td>Average</td>
<td>32.8</td>
<td>5.3</td>
<td>6%</td>
<td>46.8</td>
</tr>
</tbody>
</table>

Table 4 The handling trend of the meats in a co-op (1997) Unit : 1 million yen

<table>
<thead>
<tr>
<th></th>
<th>A (tohoku)</th>
<th>B (kanto)</th>
<th>C (kanto)</th>
<th>D (tokai)</th>
<th>E (kinki)</th>
<th>F (kyusyu)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Store</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>1007.7</td>
<td>750</td>
<td>712.4</td>
<td>348</td>
<td>1090</td>
<td>640</td>
</tr>
<tr>
<td>Japanese beef</td>
<td>279</td>
<td>60</td>
<td>127.2</td>
<td>106</td>
<td>90</td>
<td>100</td>
</tr>
<tr>
<td>Domestic</td>
<td>351</td>
<td>500</td>
<td>425.3</td>
<td>216.8</td>
<td>840</td>
<td>440</td>
</tr>
<tr>
<td>Import</td>
<td>377.7</td>
<td>190</td>
<td>159.9</td>
<td>25.2</td>
<td>160</td>
<td>100</td>
</tr>
<tr>
<td>Import ratio</td>
<td>37%</td>
<td>25%</td>
<td>22%</td>
<td>7%</td>
<td>15%</td>
<td>16%</td>
</tr>
<tr>
<td>Pork</td>
<td>1828</td>
<td>1150</td>
<td>1166.8</td>
<td>362.8</td>
<td>700</td>
<td>400</td>
</tr>
<tr>
<td>Domestic</td>
<td>1571.3</td>
<td>1040</td>
<td>1058.1</td>
<td>362.8</td>
<td>700</td>
<td>370</td>
</tr>
<tr>
<td>Import</td>
<td>256.7</td>
<td>110</td>
<td>108.7</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Import ratio</td>
<td>14%</td>
<td>10%</td>
<td>9%</td>
<td>0%</td>
<td>0%</td>
<td>8%</td>
</tr>
<tr>
<td>Chickin Total</td>
<td>774.6</td>
<td>542</td>
<td>671.2</td>
<td>181.4</td>
<td>690</td>
<td>400</td>
</tr>
<tr>
<td>Special hen</td>
<td>107.8</td>
<td>106</td>
<td>144.8</td>
<td>20.4</td>
<td>100</td>
<td>150</td>
</tr>
<tr>
<td>Common hen</td>
<td>666.8</td>
<td>430</td>
<td>525.2</td>
<td>161.1</td>
<td>590</td>
<td>220</td>
</tr>
<tr>
<td>Import</td>
<td>?</td>
<td>6</td>
<td>1.3</td>
<td>0</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Common hen ratio</td>
<td>86%</td>
<td>79%</td>
<td>78%</td>
<td>89%</td>
<td>86%</td>
<td>55%</td>
</tr>
<tr>
<td>Joint purchase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beef</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>185.2</td>
<td>1060</td>
<td>1355.3</td>
<td>652</td>
<td>1320</td>
<td>1070</td>
</tr>
<tr>
<td>Japanese beef</td>
<td>33.9</td>
<td>180</td>
<td>336.5</td>
<td>119</td>
<td>100</td>
<td>68</td>
</tr>
<tr>
<td>Domestic</td>
<td>46.6</td>
<td>660</td>
<td>505.4</td>
<td>446</td>
<td>1090</td>
<td>524</td>
</tr>
<tr>
<td>Import</td>
<td>104.8</td>
<td>220</td>
<td>513.5</td>
<td>87</td>
<td>130</td>
<td>478</td>
</tr>
<tr>
<td>Import ratio</td>
<td>57%</td>
<td>21%</td>
<td>38%</td>
<td>13%</td>
<td>10%</td>
<td>45%</td>
</tr>
<tr>
<td>Pork</td>
<td>454.7</td>
<td>1700</td>
<td>1388.3</td>
<td>699</td>
<td>940</td>
<td>871</td>
</tr>
<tr>
<td>Domestic</td>
<td>442.7</td>
<td>1480</td>
<td>1233.3</td>
<td>699</td>
<td>940</td>
<td>871</td>
</tr>
<tr>
<td>Import</td>
<td>12</td>
<td>220</td>
<td>155</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Import ratio</td>
<td>3%</td>
<td>13%</td>
<td>11%</td>
<td>0%</td>
<td>0%</td>
<td>0%</td>
</tr>
<tr>
<td>Chickin Total</td>
<td>33.2</td>
<td>816</td>
<td>890</td>
<td>448</td>
<td>860</td>
<td>909</td>
</tr>
<tr>
<td>Special hen</td>
<td>5.4</td>
<td>196</td>
<td>262.4</td>
<td>23</td>
<td>150</td>
<td>258</td>
</tr>
<tr>
<td>Common hen</td>
<td>27.9</td>
<td>500</td>
<td>497.1</td>
<td>425</td>
<td>710</td>
<td>607</td>
</tr>
<tr>
<td>Import</td>
<td>?</td>
<td>120</td>
<td>130.4</td>
<td>44</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common hen ratio</td>
<td>84%</td>
<td>61%</td>
<td>56%</td>
<td>95%</td>
<td>83%</td>
<td>67%</td>
</tr>
</tbody>
</table>

Source: Japanese Consumers' Co-operative Union
Table 5 Sales of Livestock products “sanchoku” of G co-op (joint purchase co-op)

<table>
<thead>
<tr>
<th></th>
<th>93</th>
<th>95</th>
<th>97</th>
<th>99</th>
<th>2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnover</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>5379.9</td>
<td>3179.2</td>
<td>3030.9</td>
<td>3437.7</td>
<td>3368.1</td>
</tr>
<tr>
<td>Beef</td>
<td>1109.1</td>
<td>1070.5</td>
<td>936.9</td>
<td>1006.6</td>
<td>1012.9</td>
</tr>
<tr>
<td>Pork</td>
<td>1131.9</td>
<td>980.4</td>
<td>973.8</td>
<td>1073.2</td>
<td>1076.9</td>
</tr>
<tr>
<td>Chicken</td>
<td>1431.9</td>
<td>560.8</td>
<td>459.3</td>
<td>595.7</td>
<td>622.6</td>
</tr>
<tr>
<td>Others</td>
<td>1707.1</td>
<td>567.4</td>
<td>661.0</td>
<td>762.2</td>
<td>657.5</td>
</tr>
<tr>
<td>The amount of sales</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>7157.2</td>
<td>6785.7</td>
<td>5865.3</td>
<td>6722.6</td>
<td>6983.3</td>
</tr>
<tr>
<td>Beef</td>
<td>1389.9</td>
<td>1506.7</td>
<td>1204.7</td>
<td>1343.3</td>
<td>1361.1</td>
</tr>
<tr>
<td>Pork</td>
<td>2444.2</td>
<td>2129.9</td>
<td>1940.4</td>
<td>2131.9</td>
<td>2182.6</td>
</tr>
<tr>
<td>Chicken</td>
<td>1375.5</td>
<td>1310.4</td>
<td>1008.3</td>
<td>1263.3</td>
<td>1282.5</td>
</tr>
<tr>
<td>Others</td>
<td>1947.6</td>
<td>1839.5</td>
<td>1711.9</td>
<td>1984.0</td>
<td>2157.1</td>
</tr>
<tr>
<td>Unit price</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>751.7</td>
<td>468.5</td>
<td>516.8</td>
<td>511.4</td>
<td>482.3</td>
</tr>
<tr>
<td>Beef</td>
<td>797.9</td>
<td>710.8</td>
<td>777.7</td>
<td>749.4</td>
<td>744.2</td>
</tr>
<tr>
<td>Pork</td>
<td>463.1</td>
<td>460.3</td>
<td>501.8</td>
<td>503.4</td>
<td>493.4</td>
</tr>
<tr>
<td>Chicken</td>
<td>1041.0</td>
<td>428.0</td>
<td>455.5</td>
<td>471.6</td>
<td>485.4</td>
</tr>
<tr>
<td>Others</td>
<td>870.5</td>
<td>308.5</td>
<td>386.1</td>
<td>384.2</td>
<td>390.4</td>
</tr>
<tr>
<td>The number of items</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>266</td>
<td>290</td>
<td>349</td>
<td>407</td>
<td>497</td>
</tr>
<tr>
<td>Beef</td>
<td>85</td>
<td>103</td>
<td>101</td>
<td>118</td>
<td>123</td>
</tr>
<tr>
<td>Pork</td>
<td>50</td>
<td>52</td>
<td>84</td>
<td>98</td>
<td>123</td>
</tr>
<tr>
<td>Chicken</td>
<td>32</td>
<td>33</td>
<td>35</td>
<td>59</td>
<td>65</td>
</tr>
<tr>
<td>Others</td>
<td>99</td>
<td>102</td>
<td>129</td>
<td>132</td>
<td>186</td>
</tr>
</tbody>
</table>

Source: It is based on G co-op data.

指摘する。それらに基づいて、生協の畜産物事業の課題を、その主体間関係に着目しながら示す（Table 4, 5）。

3. 結果と考察

生協は生協法によって県域を越えた事業活動が認められていない。従って各都道府県ごとに生協が存在し、事業上スケールメリットは県域を越えた事業連合をつくって対応している。

Table 1 にあるように、生協は80年代を通じて組織と事業を大幅に拡大した。生協のうち購入事業を主とする購入生協の組合員は82年から90年にかけて約2倍に増加し、さらに98年にかけて1.5倍弱の増加。結果として82年から98年までで2.93倍を約し1,705万人となった。これを主として地域の市民を対象として地域生協の事業高みると、82年の8,595億円から90年の2兆1,448億円へと約2.5倍にのぼり、90年から98年ではさらに2兆6,275億円のばとしてはいるものの、1.23倍と組合員の伸びに比べて微増である。また畜産物に関しては、82年882億円から90年2,202億円（約2.5倍）、98年には2,533億円（1.15倍）と、事業高の伸びを下回る伸びにとどまっている。

生協の組織と事業の特徴は、協同組合である点にある。すなわち、1株1票でなく1人1票の原則である。このことから生協では、商品事業を通じた組合員の要望の実現を組織・事業原則としてきた。さらに、取引関係者がそれぞれの利害関係を、社会的正義、あるいはあるべき姿といった一定の価値観に基づいて律しようとしてきた点も特徴である。そして事業の中心は組合員が毎日口にする食品であった。

従って生協の価値観としてのいい例が、国内農業・農村に対する支援の姿勢である。これは都市の生協においては必ずしも無条件に「農業を守れ」という主張にはならないものの、「生協産直
業」として取り組まれているのにもその姿勢を見て取っている。

Table 2 は生協の産直事業の展開である。必ずしもすべての生協の産直事業の数値を合計しているわけではないが、日本生協連が年ごとに行っている調査である。ここからいくつかの特徴を指摘しておこう。

第一に、生協の産直事業は一貫して増加していることである。82年1378.4億円から90年には2571.4億円に約1.87倍に、98年へは3938.9億円に1.53倍に伸ばした。

第二に、生協産直は現在、生鮮品での産直比率は食品全般的なかでも高く、産直比率では農産で42.5％、畜産で45.0％に上っている。

第三に、畜産物では90年以降の畜産物取り扱いの停滞傾向とその下での産直比率の上昇がみとれる。ここではデータ上の注意が必要である。94年から98年にかけて畜産物供給高が330億円ほど減少しているが、Table 1 にあるように、生協の畜産物取扱高は減少しているわけではないので、この数値は調査上の把握漏れと考えられる（この点、今後調査時にはこの調査漏れへの対策が必要といっている）。そこで産直供給高のみをみると、82年344.8億円で産直比率47.1％が、90年681.5億円と1.98倍となり産直比率は35.3％となった。それが94年に884.8億円と1.30倍となり産直比率は38.0％とほぼ横ばいだったが、98年は899.2億円と供給高はほぼ横ばいながらも、産直比率は45.0％と7ポイントも上昇した。仮にこの数字を正しいとするならば、90年代の不況期に、とりわけ94年に生協全体で前年度供給高を割り込んだ後に、事業展開に一定の軌道修正が施された結果として、そして牛肉輸入自由化の影響への対応を織り込んだ後の姿が、この98年の数値であるといえただろう。すなわち、90年代後半、生協は畜産物事業伸び悩みを、産直商品の増加＝生協の独自商品の増加で対応してきているということである。

ところで生協産直とはいったいいかなる取り組みか。概略を説明しておく。

生協産直は、組合員の「安全・安心」を求める事業活動として取り組まれてきた。そして80年代のはじめには、安全・安心を前提として、①生産者がわかる、②生産方法が明確、③生産者と消費者が交流できる、といった産直３原則でほぼ全国的に一般化されるようになった。また産直商品はそれぞれの生協の独自商品として、生鮮品における「コーポレート」=PB商品という位置づけで取り組まれてきた。

Table 3 には、82年当時の生協産直の農産と畜産の取り組状況の比較が示されている。日本生協連が調査を行った生協かつ数値が示されていたものの限定した表である。Table 1, 2 でも示されていても、現在は畜産よりも農産の方が取り扱いがやや多いが、80年代初頭は農産に比べ畜産の取り扱いの方が多かった。これは共同購入で生協が農産を取り扱う技術がまだ未整備だったことが挙げられる。今日では共同購入でも農産の取り扱いが増えていることから畜産は相対的にその比重を下げている。

しかし80年代初頭、畜産の産直比率は47.1％と現状よりも高かった。これは戦後になって、とりわけ高度経済成長の過程で一般化してきた肉食の急激な高まりと、それに伴う消費の不安、そして輸入自由化の方法性を示す政策のもとでの畜産農家の経営の厳しさ、そして減少といった社会的背景のもと、農村から都会へと続いて農村と切りかわされた都市住民のシンパシーをもとにくいもののがこの畜産物産直比率の高さには示されていた。

そもそも生協運動は、本物の牛乳を飲みたいという運動から始まっているのが少なくない。安全・安心でおいしいものといった組合員の要望を
畜産物の消費動向と流通業の販売戦略

商品に（形に）するのは畜産物がはじめにあったと言っているのである。それは加工食品に対する要望と同様であった。

そして、生産者へのシンパシーは、農業・農村
支援というかたちで生産対策の取引において重要
視されている。80年代には、生協の仕様で生産し
てもらうため、それにかかるコストのアップ分は
生産費を保証するとか、畜産物のエサの内容は、
安全であることが証明されている必要があるとし
てコストアップを承知で一般のエサと異なるエサ
を使用するとか、という商品づくりが行われてい
たのである。

そんななか、1988年に牛肉輸入自由化（関税
化）が広まり、91年から次自由化される。牛肉需
要そのものは91年から99年にかけて1.39倍に増加
しながらも牛肉需要は95年をピークにわずかに低
下している。同じ期間、豚肉と鶏肉需要はいずれ
も1.03倍となっている3）。生協で扱う飼料は、家
庭消費用である。輸入肉が増大している下では、
家庭生産者が減少するの、加工・外食もしくは輸入
肉が消費されている。豚では、家庭消費生産の
88％が国産とされている4）。また、ブロイラーと
鶏飼料・地鶏の出荷数割合は、一般ブロイラー
が76.9％を占めているとされる5）。

そのなかで、生協の畜産物取り扱いの現状につ
いて Table 4 から特徴を示そう。

全体動向としていえることは、生協によってそ
の取り扱い動向には大きな違いがあるということ
である。店舗に関してのべると、牛肉では、輸入
剖合が5％程度から3分の1以上までかなりのば
らつきがあるが、豚肉では、5％程度から15％程
度と牛肉ほどばらつきはない。鶏肉の場合、一般
鶏の比率は8割程度が多くなっている。

生協では、産直という場合、多くが国産の牛
肉・豚肉であり、鶏肉では特殊鶏と一般鶏の一部
が産直とされている。従って、産直比率45％とい
うことは輸入を除いた国産のほぼ半数で産直＝生
協としての特徴ある商品群として扱われていると
言っている。

そこで、生協の産直品が90年代にどのように変
化してきているのかについて、首都圏の生協の事
例で特徴を指摘しよう。Table 5 に、93年から
2000年までの畜種別販売額、販売点数、単価、ア
イテム数の推移を整理した。これによると、特徴
は以下のようにまとめられる。

第一に、販売額は93年から94年に大きく減少し、
96/97年をボトムにして、その後横ばい傾向であ
る。第二に、販売点数も同様の動きである。第3
に、単価は95年以降ほぼ500円前後を推移している
る。第四に、アイテム数は95年以降大幅に増加し
た。2000年度は93年度対比で1.87倍である。パブ
ル後の消費不況のなか、畜産物の売上高は、生協
の組合員は増加するなかで、横ばい傾向で推移さ
せるのがやっとということであり、それは飼料だ
けでなく加工肉なども含めてアイテム数を増加さ
せることによって実現されている。そしてそれは
少量化と多様化によって実現しているのである。

4. 要 約

90年代以降の牛肉輸入自由化とパブル崩壊後の
消費不況のなかで、小売業は厳しい競争にさらさ
れる中、生協経営は厳しさを増している。そのな
かで、生協の商品事業は、生協産直という独自商
品の開発販売に一層力を入れるようになっている。

畜産物の場合、それは産地との提携関係による
安心安心の畜産物であり、生協の扱う国産肉の半
分程度は産直である。

その産直の供給高（販売額）の増加は、畜種ご
とおよび加工品でもアイテム数を増加させること
で実現してきていることが事例的に示された。

上記に示された事例的実態を全国レベルで検証
し、そうした供給増加がいかなるアイテム増加によってもたらされるのかが残された課題である。そしてそれらが生産者・流通業者・生協の間でどのような協力関係で実現可能なのか、それが今までの商品開発とどのように異なるのかを明らかにすることが残された課題である。文 献
1）食料・農業政策研究センター編『2000年版食料白書畜産物の需給動向と畜産業の課題』、77〜79、2001年
2）同上、98。
3）同上、135。
参考文献
大木　茂、「90年代における生協産直の動向」、生活協同組合研究、通巻294号、26〜33、2000年。
大木　茂、「日本の生協産直事業と畜産物」、畜産の研究、第55巻第１号、211〜218、2001年。
Survey on Meat and Meat Products on the Market of Several Countries in South America and Reports on the 46th International Congress of Meat Science and Technology

Michio Muguruma (Faculty of Agriculture, Miyazaki University)

I conducted a research into meat and meat products in Argentina, which was funded in part by the Ito Foundation. While I was there, I attended the 46th International Congress of Meat Science and Technology, which I am going to talk about in this report.

First of all, I observed many pieces of meat and meat products that were sold in supermarkets in Buenos Aires, Argentina. Then I discussed consumer’s needs for meat and meat products in Argentina.

The 46th International Congress of Meat Science and Technology in Buenos Aires, Argentina were held from 27th of August to 1st of September 2000 and it was very interesting. In this congress, 318 persons came to participate in this congress from 36 countries. The slogan of this congress was “How meat diversifies meals”. A scientific program for the congress was made up of 11 sessions. The themes of each session were as follows: Session 1 Meat and meat products in the third millennium; Session 2 Animal production and meat quality; Session 3 Processing as required for the market; Session 4 Biochemistry and functional properties of meats; Session 5 Meat quality: consumer demands; Session 6 Meat safety; Session 7 Packaging; Session 8 Teaching and research in meat science and technology; Session 9 meat quality requirements; Session 10 Traceability; Session 11 Animal welfare and environmental impact of meat production and processing. There were 296 papers in poster sessions, and chairpersons organized poster discussion sessions for each theme.
食文化が強く現れ、食肉製品でも、スペイン、ポルトガル、イタリアなどの製品が数多くみられる。

今回は南米における食肉および食肉製品の調査を目的に、ブラジルのサン・パウロ、アルゼンチンのプエノス・アイレス、チリのサンチアゴにおける、マーケット、食品市場、レストラン等を観察した。特にアルゼンチンにおける食肉および食肉製品を販売しているいくつかの大規模なスーパーマーケットを中心に調査を行ったので、撮影した写真のいくつかを用いて紹介したい。さらに、平成12年8月27日から9月1日まで、アルゼンチンの首都プエノス・アイレスで開催された第46回国際食肉科学技術会議にも出席したので、その会議の概略についても記述する。

1. 南米における食肉および食肉製品について

まず、最初に訪れたのは南米最大の近代都市ブラジルのサン・パウロである。日本から飛行機を乗り継いで、30数時間の旅となった。現地の季節は冬であったが、それでも寒さを感じられなかった。サン・パウロは、人口約1,500万人、ブラジル全人口の約10％が集中し国民総生産の50％を生み、多数の銀行やその他の金融機関など、まさにブラジル経済の中心として機能する大都市である。郊外の空港から市内のホテルまでの車中から眺めるサン・パウロは、とにかくそのヒトの多さには驚かされた。人種構成も、白人系、混血、黒人系、黄色人系と多様で、数多くの移民を受け入れてきたことがうかがわれた。ブラジルの言語はポルトガル語であるが、サン・パウロの中心地に位置したセー広場から徒歩5分ほどのところにある東洋人街には、日系人の経営する商店などが多数軒を連ねていた。その地域には、病院、図書館、日本語の日刊新聞本社などもあり、生活に必要な物事がすべてが日本語のみで事足りるようである。

市内の治安はあまりよくないとことで、初日は現地の旅行社に依頼して、日系人に案内していただいた。当日はサッカー場の駐車場に併設されたラスト市場を見学した。サン・パウロには、市の中心部に近い競技場と郊外に位置する2つのサッカースタジアムがあるが、そのうちの一つのサン・パウロ郊外にあるパクエンブー競技場を訪れました。そこには野菜や果物、日用品販売品などの店とともに、各種ソーセージ、ベーコンなどを販売している個人商店が軒を連ねていた。サッカー大戦ブラジルは熱狂的なファンが多く、沢山の観客がサッカー観戦にスタジアムを訪れる。おそらくそれらの人々の行き帰りには、商品の売り上げも倍増するものと思われた。そこで販売されていた食肉および肉製品には、手作りの製品も沢山含まれていた。なかでも鶏肉を主原料としたソーセージや牛肉などの乾燥肉製品に興味がひかれた。また、サラソーセージを中心とした、ヨーロッパからの輸入肉製品も、もちろん数多く販売されていた。ブラジルの郷土料理としてまず挙げられるのが、フェションという黒豆を豚や牛の内臓や耳、尻尾、足などと一緒に煮込んだ料理だそうで、フェジョアーダ（Feijoada）と呼ばれている。現在では精肉やソーセージを入れて食べやすくしており、この市場の肉製品もその名物料理に利用されているようだ。

その後、郊外にあるレストランに足で運び、ブラジル風焼き肉、シュラスコ（Churrasco）に挑戦することにした。昼食時ではあったが、広い店内に入るために順番待ちの客であふれていた。シュラスコは、鉄串に刺して肉の塊を炭火であぶり、串ごとテーブルを持ってきて、表面の火の通った部分を目の前にスライスするものから、シンプルな網焼きスタイルまで様々で、肉の種類は牛の各部位やチキン、マトン、腸詰など20種類以上もあった。案内してくれたガイドさんが特に美味しいと勧めてくれたのが、写真1に示した牛のシッポ
の付け根の部分であった。確かに食べてみると、なるほどと思われる食感と味であった。牛のシパボはいつも動いており、常時運動している筋肉は、食すると美味しいことを再確認した次第である。

種類の多いシェラスコのなかで、人気のある部位のトップ3がピカーニャ（脂付きのもも肉）、クッビン（ゼブ牛の背のコブ肉）、コステラ（肋骨肉）とのことである。食事を作った店は食べ放題レストランで、肉類はもちろんのこと、付け合わせはサラダやマリネなどで、これも取り放題。しばらくして、テーブルに上に、緑と赤に色分けされた円形の筒状の置物があることに気がついた。緑を上にして「肉を持ってくるように」を意味し、赤が上なら「肉を持ってくる必要なし」とのことであった。緑を上にしておくと、串にさして焼いた肉がどんどん運ばれてくる。時間制限がないので、お腹がいっぱいになると、赤を上にして会話をつけ、また食べたかなれば緑を上にする。食事と話をつけましょうという心遣いが感じられた。

翌日は地下鉄を利用して、市内にあるデパートやスーパーマーケットの食品売り場を調査した。大きなデパートの食肉・食肉製品売り場の品揃えはかなり豊富であった。ブラジルのPerdigao社からは非常に様々な食肉製品が美しい包装形態で販売されていた。生ハム類の種類も多く味も結構おいしく感じられた。ただ色調はかなり濃厚な赤色を呈していた。デパートやスーパーマーケットでも鶏肉を使用した製品が目に付いた。

サンパに代表されるように、陽気でエネルギッシュなブラジルの人々にとって、食べることはそのパワーの源泉でもある。それには多くの食肉、肉食製品が貢献しているようであった。

次に、アルゼンチンの首都であるブエノス・アイレスを訪れた。ブエノス・アイレスはラ・プラタ川の河口に広がる港町で、ヨーロッパからの移民により築かれた“南米のパリ”と呼ばれる非常に美しい、人口300万人、面積約200km²の大都市である。ブエノス・アイレスから内陸部に向かって扇状に広がる広大な大草原、パンパは、国土全体の20%を占める広さで、牛や牛のガウチョの活躍の舞台でもある。食糧自給率が90%を越えるこの国は、なんといっても放牧により生産される家畜から得られる肉料理がメインである。特に南米は牛肉の生産が多く、アルゼンチンは世界屈指の牛肉の生産国であると同時に、一人当たりの消費量も世界一といわれている。従って、牛肉に対するアルゼンチン人の胃袋はきわめて大きく、一人当たりの牛肉消費量は枝肉ベースで年間59.9kgにもなるそうである。もちろん、牛肉の方が豚肉よりもはるかに安値である。

アルゼンチンにおける2000年の牛のと殺頭数は推計で1,222万頭、枝肉生産量は263万トンとなったそうだ。2000年5月にパリの国際献状試務局本部で開催された年次総会でアルゼンチンは口蹄疫ワクチン不接種清浄国としての認定を受け、米国、カナダ、台湾市場等へ牛肉が輸出されている。アルゼンチンにおける2000年の牛肉の輸出量は推計で約35万トンとのことである。アルゼンチン
写真2 スーパーマーケット Carrefour の食肉売り場の観察、通訳を交えて店長の案内で

ンの味といえば、肉料理。ふ厚いステーキは最もポピュラーなメニューだ。部位によっていろいろな呼び名があり、たとえば Bife de Chorizo はサーロインステーキ、Bife de Costilla はロースの部分といった具合である。なかでも牛肉を炭火で豪快に焼いたアサード（Asado）が代表的である。これは一種のバーベキューより、もともとはガウチョたちの料理だった。牛を丸焼きにしたもので部位によっていろいろの呼び方がある。たとえば Asado de Lomo は脂肪の少ないフィレ肉、Asado de Chorizo はロースの部分、Asade de Costilla はスペアリブという具合である。バタゴニア地方では羊肉のアサードがあるそうだ。ほかに鶏肉や豚肉もあるが、牛肉よりも値段が高いこともあって、あまり一般的ではない。

世界的に有名で非常に大規模なスーパーマーケット、Carrefour の食肉および食肉製品売り場を農畜産業事務局の南米事務所駐在員の浅木所長にお世話をうたって調査した（写真2）。店内での写真撮影は問題なく許可され、店長をはじめ通訳の方にも同席頂いたために、食肉および食肉製品売り場の状況や各種製品について質問することができ、大変に助かった。まず、その広大な敷地に建つスーパーの食品売り場を見た時に、全売り場面積に占める、食肉および食肉製品の売り場面積の割合が、日本に比較して非常に高いことが印象的で

写真3 大きなブロックで販売されている牛肉

写真4 大きな塊で販売されているハムやベーコン類

あった。それだけでも食肉の需要の多さがうかがわれた。さらに、食肉を購入する場合の最低の単位が1 kg ですることから、調査したスーパーにおいても写真3 および4 に示すように大きなブロック単位で売られている食肉や食肉製品が多いためも特徴的であった。もちろん日本のように必要に応じて欲しい食肉および食肉製品を計り売りしてくれる売り場は設けていたし、（写真5）各種肉製品のスライス品もふんだんに用意されていた（写真6）。ソーセージのことをチョリゾ（Chorizo）と呼び、ボリューム満点の製品
写真5 食肉。食肉製品の計り売りコーナー

写真6 計り売りコーナーで販売されているスライスした各種食肉製品

が多く、普通のソーセージ（写真7）と血液入りの赤黒いソーセージ、モルチージャ（Mor-chiia）（写真8）が並んで陳列されていた。また、長くてくるくる丸まったサルチチャ（Salchicha）（写真9）も人気商品で、ブラジルやチリでも多く見かけた。さらに、マタンバー（Matam-bre）と呼ばれる卵を中に挟んだ、非常に珍しい製品も販売されていた（写真10）。もちろんスペインやイタリアからの輸入品コーナーでも数多くの製品が並んでいた。ドライソーセージやセミドライソーセージは大変に人気があるようで、いろんな種類のソーセージが数多く販売されており、特に、サラミソーセージの売り場の陳列方法にはかなりの工夫が感じられた（写真11, 12, 13）。

また、各種生ハムも大きなブロック状態のままや、スライスしてパック包装した形態でも陳列されて
いた（写真14）。
すっかりワインの国としてその名前が日本で知られるようになったアルゼンチン。ワインの生産量は世界第5位、もちろんその生産量は南米一とことであるが、国際的にはそれほど知られていないようである。それは、味の問題ではなく、生産されたワインのほとんどが国内で消費されて、輸出にまで手が回らないからと言われている。日本にアルゼンチンの高級ワインが正式に輸入代理店を通じて入ってくるようになったのは、ほんの数年前とのことである。フランスワインに匹敵する美味しさは、アンデス山脈の水、ブドウに最適な気候など、さまざまな条件がうまくかみ合って生まれる。スーパーマーケット、Carrefourのワイン売り場も非常に充実しており、多くの銘柄のワインが並べられていた。肉製品や野菜、その他の雑貨などが満載された大きなカートを引いて、楽しそうにワインを選んでいる夫婦もみてとろとした。南米は赤ワインが美味しいそうで、肉料理にぴったり。食肉の消費も増えるはずである。
次に、スーパーマーケット以外に、個人商店の肉屋さんを探してみた。国際学会に出席する途中、最寄りの地下鉄の駅から会場に至るまでの道筋にも、個人で経営している肉屋さんがいくつかみられた。それらの店では、各種のパンや飲み物ももちろん一緒に販売されており、自分の好きなハム
位置する首都サンチアゴを訪れました。サンチアゴはチリの人口の半数近く522万人が暮らす、標高約520mの南米第4の大都会である。アンデス山脈に源を持つマイポ川支流のマポチョ河畔に広がり、サンチアゴ大学をはじめ多くの大学、博物館、美術館を備える文化都市である。また、温暖な地中海気候で、豊かな土壤でワイン造りにも絶好の地域である。太平洋が近いこともあり中央市場には、生ウニ、アワビ、カニをはじめ、日本では見たことがないような魚も売られており、新鮮な海の幸、果物、野菜、肉といった生鮮食品を中心に行き、加工品、花、ハーブなどの店がぎっしり詰まっていた。

チリでよく食されているのは肉料理で、ローストチキンやステーキなどがポピュラーである。手の込んだ料理は比較的少なく、味付けは塩とオリーブが主体で、やや塩気は強い。以下にチリの大衆的な肉料理を挙げる。

エンパナーダ・フリータ (Empanada Frita) は油で熱く揚げた肉詰めパイのこと。さらに肉に加えて、タマネギ、レーズン、オリーブのみじん切りを加えた少し大きいものが、エンパナーダ・デ・オルノ (Empanada de Homo) と呼ばれている。カスウエラ・デ・アベ (Cazuela de Ave) は鶏の大きな骨付き肉を、ジャガイモ、コックなど、いろんな野菜と一緒にじっくりと煮込んだスープのこと。牛の角切り肉入りをカスウエラ・デ・ヴァクーノ (Cazuela de Vacuno) と呼ぶ。

チリのシュラスコ (Chrrasco) はブラジルのものとは違い、牛肉の鉄板焼きのことを指し、パンにはさんで食べるのが一般的である。パストル・デ・チョクロ (Pastel de Choclo) はひき肉、タマネギ、オリーブの具と、トウモロコシの粉で作った生地を交互に重ね、オープンで美味しく焼き上げてある。チリ料理のなかではとても手の込んだ料理である。
チリ国内唯一の地下鉄（Metro）を利用して、スーパーマーケットの食肉、食肉製品売り場を見て回った。チリの中央市場では、食肉や食肉製品売り場よりも鮮魚売り場の面積が広く、食肉製品売り場はアルゼンチンのそれとは比較にならないくらい狭いのが印象的であった。しかし、一般的な食肉製品は輸入製品を含めるとかなり品揃えはよかった。食肉製品売り場には、計り売りのコーナーがあり、各種ハム・ソーセージのスライス製品等が販売されていた（写真16）。特に、クックドソーセージの一種であるヘッドチーズのように、ゼラチンの中に様々な食材を入れて造った、Chanchito や Queso Cabeza 等は大変珍しい製品であった（写真17）。これらは、ドイツで製造されている、肉ゼリー製品のブルガンダースルツェ（Burgunder Sulze）やシャンピニオンアスビッ
ク（Champignon Aspic）に非常に似た製品と思われた。

最近、チリもアルゼンチンと同様に、すっかりワインの国としてその名前が知られるようになってきた。むしろ日本では、南米産ワインとしてはチリワインが確実に浸透しはじめているようである。この国のスーパーマーケットのワイン売り場の面積も非常に広く、沢山の銘柄が陳列されていた。南米のワイン通によると、チリワインは白ワインが美味しいそうで、レストランで名産のチリワインを傾けながらのシーフード料理は格別と思われた。

以上、ブラジル、アルゼンチン、チリの食肉、食肉製品についての調査を行ったが、なんといっても牛肉料理といえばアルゼンチン。食肉製品の種類にしても量にしても非常に豊富であった。また、レストランで食べるハムやソーセージの品質も極めて良好であった。このような牛肉好きなアルゼンチンとウルグアイ人を除くと、南米諸国でももっと人気のあるのは鶏肉といわれている。レストランではチキン入りのチャーハン、アロス・コン・ポジョ（Arroz con Pollo）やフライドポテト付き ポジョ・ドロード・コン・パパス（Pollo Dorado con Papas）などが定番メニューとのことである。専門店も数多く、ケンタッキーフライドチキンは大人気であった。いずれにしろも予想以上に南米の豊富な食肉製品には驚かれた。

今後は日本でも、発酵食肉製品を含む様々な種類の高品質な食肉製品が、今まで以上に見直しを凝らして販売されるようになり、それらが消費者に受け入れられて、食肉の一層の消費拡大につながることを期待したい。

２．第46回国際食肉科学技術会議について
第46回国際食肉科学技術会議（46th Interna-
レストラン棟を中心に、いくつかの会議場が建っていた。本会議やポスター展示等が催された、正面入り口に近い会議場の一階には、大会関係者、旅行業者等が並ぶ受付が設けていた。今回の会議では、事務局と参加者との連絡はすべてEメールで行われるために、学会参加の登録や学会推薦のホテルの予約、テクニカルツアーへの参加、オプショナルツアー等、それらの登録やそれぞれの予約が確かにされたかどうか非常に不安であった。筆者の場合でも、受付で問題がないことを知りほっとした次第である。すべての予約の確認後、参加者には46th International Congress of Meat Science and Technology、Argentinaと、今回の学会のロゴマーク入りの黒色の布製のバッグルームが手渡された。中には、ふ厚いブローシューディング2部や各種案内、アルゼンチンタンゴのCD等が入っていた。会議参加者名簿によると、会議への参加者は36ヶ国318名、日本からの参加者は10名であった（表1）。正式な発表がなかったために、同様に日本の参加者を含む出席者の総数は明らかではないが、450名ぐらいと思われる。

会議の構成

会議は8月28日の午前、組織委員長のJ.A. Lasta博士による「How meat diversifies meals; いかに食肉は食卓を多彩にするか」というオープニングレクチャーから始まった。11のセッションからなる会議が、総合受付のすぐ上の2階にある2つの会場を使用して、9月1日の午前中まで続いた（8月30日はテクニカルツアーで会議は休み）。セッションの2～8までは1～3の基調講演と1～2のラウンディングレクチャーの話題およびポスター発表等から構成されていた。基調講演数は24題、ラウンディングレクチャーの話題は22題、ポスター総数は296題であった（表2）。

昨年の横浜での学会とは異なり、初日のセッション

<table>
<thead>
<tr>
<th>国</th>
<th>名</th>
<th>参加者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>アルゼンチン</td>
<td>66</td>
<td></td>
</tr>
<tr>
<td>オーストラリア</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>オーストラリア2</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ベルギー</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ブラジル</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>カナダ</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>チェコ</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>イタリア</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>日本</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>韓国</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>リトアニア</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>メキシコ</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>ニュージーランド</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ノルウェー</td>
<td>11</td>
<td></td>
</tr>
<tr>
<td>ポーランド</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>ポルトガル</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>台湾</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>ルーマニア</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>ロシア</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>スロベニア</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>南アフリカ</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>スペイン</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>スウェーデン</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>オランダ</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>イギリス</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>ウルグアイ</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>アメリカ合衆国</td>
<td>37</td>
<td></td>
</tr>
<tr>
<td>ユーロスラビア</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>合計</td>
<td>318名</td>
<td></td>
</tr>
</tbody>
</table>
表2 各セッションのテーマと発表数

<table>
<thead>
<tr>
<th>No.</th>
<th>セッションのテーマ</th>
<th>ラウンドテーブル</th>
<th>ポスター</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>21世紀の食肉および食肉製品</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>家畜の生産と肉質</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>3</td>
<td>市場で要求される食肉加工</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>食肉の生化学と機能性</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>5</td>
<td>食肉の品質：消費者の要求</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>6</td>
<td>食肉の安全性</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>7</td>
<td>包装</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>8</td>
<td>食肉の科学と技術に関する教育と研究</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>9</td>
<td>肉質の必要条件</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>製品の農場から消費者まで</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>食肉の生産と加工における動物の福祉と環境の影響</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>合計</td>
<td>24</td>
<td>22</td>
<td>296</td>
</tr>
</tbody>
</table>

ヨン1と最終日のセッション9～11以外は、立てに長い隣り合った2つの会場を使用して、2つのセッションが同時に進行する形式がとられた。日本の学会でもよく経験することであるが、聞きたい演題が聞けない不満もあったと思われる。ポスターの発表会場は同じフロアーに用意されたが、場所によっては通路を使用していたために、スペースはかなり狭く混雑していた。しかし、ポスターの発表に対しては、各所で熱心な討議がなされていた（写真18）。セッションごとのポスターを開めていくディスカッションには十分な時間が取られていた。今回の会議では、会場までの案内の不足、ポスター発表のための事前の指示の欠如やその他もろもろの運営に対して、参加者は満足していなかったようであった。会場で会った昨年の参加者から、横浜の会議はすばらしかったとのお褒めの言葉を頂いたことからもうなずける。

会議の内容の概略
基調講演の内容を中心にした会議の内容の概略を下記に述べる。
オープニングレクチャーニー後に、フランスのグ

写真18 筆者のポスターの前で討論して頂いたウィスコンシン大学のグリーダー教授（タイチンの基調講演の演者）

アリン博士は世界の食肉の消費量は、これからの発展途上の消費拡大を予想すると食肉産業の将来は有望であるが、先進国においてはすでに食肉の消費はプラトーに達している感があることを述べた。そして、先進諸国では、狂牛病や口蹄疫などの発生により生じた食肉の安全性の問題に対する不安が、さらに食肉の消費量を減少させる結果を招き、このような問題の解決のために、基礎的な研究や安全性に関する啓蒙の必要性を力説した。

家畜の生産と肉質の項では、将来の家畜生産における成長促進因子の使用について、家畜の生産性の向上のために、テストステロン、エストラジオール17β、プロゲステロン、合成ステロイドホルモンのトレンボロンアセテートやメランゴステロール、非ステロイド性のゼラノールなどの成長ホルモンの現在の使用状況とその正当性や今後の課題などが紹介された。また、クローニング化したトランスジェニック牛や豚の遺伝子発現についての研究の現状と問題点についての報告がなされた。現在、遺伝子をノックアウトした牛は作られておりが、牛や豚についてはこれからであり、遺伝子コントロールと肉質に関する研究の必要性が述べられた。

市場にとって要求される食肉製品の加工の項では、発酵乾燥食肉製品に関する研究の現状や、肉
の収量や肉質に基づくオンラインにおける等級評価システムについて，さらに，と体解体の自動化を補助する測定装置とシミュレーション機器について触れられた。ポスターセッションでも，生産ラインのオートメ化や発酵肉製品，ドライソーセージなどに関する多くの報告があった。

食肉の生化学と機能性の項では，米国ウィスコンシン大学のグリマー教授が肉の柔らかさとタイチンの関係について基調講演した。そこでは，いろいろな手法で研究した結果，タイチンは死後の肉の軟化が起こる時期と最も同じ時期に低分子化していくという明らかに証拠があるが，タイチンの分解が肉の柔らかさを決める第一の要因なのか，単なる二次的マーカーなのかを決めるためにさらなる研究が必要であることを述べた。また，デンマークのロイヤル農・獣医大学のペルトセン教授が生肉の脂質酸化に及ぼす内因性の要因，脂質の酸化に及ぼすと戦前の生理的要因の重要性，抗酸化剤の添加に焦点を合わせた食肉製品の加工，包装やその後の貯蔵等について幅広い講演を行った。

消費者に要求される肉質の項では，米国オハイオ州立大学のハーバー教授の官能検査のための新しい方法についての基調講演に代表されるように，ポスターセッションでも，官能評価に関する演題の活発な発表がなされた。

食肉の安全性の項では，イギリスのパラニィ博士が，温度やpH，水分活性性等により影響される基礎モデルの微生物に関するデータを基に，さらに二酸化炭素モデルや亜硝酸モデルにおいても，二酸化炭素濃度や亜硝酸濃度によっても影響される微生物に関する様々なデータを集積して，それらをコンピュータ化して有効に利用する方法について講演した。この項では，自動化，商品寿命と安全性の関係，O157，サルモネラ，リステリア関係等の報告が多数を占めた。

包装の項では可食性で生分解性包装フィルムやコーティング材に関する最近の情報，それらの製品化の可能性についての講演が行われた。また，雑囲気を調整した包装方法による商品の持ち寿命の延伸についてのポスターが目を引いた。

食肉の科学や技術における教育や研究の項では，学部あるいは大学院において，食肉の科学および技術を身に付けるためにの講義や実験，実習についてのカリキュラムに関する講演が行われた。さらに，食肉の科学を身に付けるためにインターネット（Meat Net）を導入し，基礎的な問題以外に最新の情報をいつでも呼び出すようにして教育の効果をあげる方法などが紹介された。

以下に会議のプログラムについて記載する。

会議のプログラム
8月27日（日）7:00 p.m. 歡迎レセプション

8月28日（月）午前：
歓迎式典
特別講演
・いかに食肉は食卓を多彩にするか（Dr. J. A. Lasta：INTA, Argentina）
コーヒーブレイク
セッション1. 21世紀の食肉および肉食製品
基調講演（セッション1）
・食肉の科学と技術における研究の目的と必要性（Dr. C. Valin：INRA, France）
ディスカッション，コンクルージョン
昼食 午後：
セッション2. 家畜の生産と肉質
基調講演（セッション2）
・将来の家畜生産における成長促進因子の使用：一つの観点から（Dr. S. L. Boyles：The Ohio State Univ. USA）
・食肉生産におけるホルモンによる成長促進と
消費者の受容性の違い（Dr. H. Galbraith：Univ. of Aberdeen, UK）
・トランスジェニック牛と豚における遺伝子発現（Dr. S. Stice and Dr. J. Rzucidlo：Univ. of Georgia, USA）
ラウンドテーブル、ディスカッション、コンクルージョン
コーヒー・ブレイク
ポスターセッション

セッション3 市場で要求される食肉加工
基調講演（セッション3）
・最小限加工した食品の安全性（Dr. T. Martinens：Catholic Univ. of Leuven Belgium）
・発酵乾燥製品における研究の優先順位（Dr. K. Incze：Hungarian Meat research Institute, berdeen, UK）
ラウンドテーブル、ディスカッション、コンクルージョン
コーヒー・ブレイク
ポスターセッション

8月29日（火）午前:
基調講演（セッション2）
・異なるシステムでの動物の行動と肉質（Dr. P. LeNeindre ：INRA, France）
・健康に食するための食肉の生産（Dr. M. Enser ：Univ. of Bristol, UK）
セッション4. 食肉の生化学と機能性
基調講演（セッション4）
・タイチンと食肉の柔らかさ（Dr. M. Greaser：Univ. of Wisconsin, USA）
ラウンドテーブル、ディスカッション、コンクルージョン
コーヒー・ブレイク
ポスターセッション

昼食 午後:
基調講演（セッション3）
・収量や肉質に基づくオンラインにおける等級評価システム（Dr. A. Lebert：INRA, France）
・と解体体の自動化を補助する制御装置とシミュレーション機器（Dr. R. Clarke：Food System Technology, New Zealand）
基調講演（セッション4）
・食肉および肉製品の酸化、商品寿命と安定性（Dr. G. Bertelsen：Royal Veterinary and Agricultural Univ., Denmark）
ラウンドテーブル、ディスカッション、コンクルージョン
コーヒー・ブレイク
ポスターセッション

8月30日（水）テクニカルツアー・観光ツアー
TS-1：One day visit to a traditional estancia
TS-2：Visit to a meat product processing plant and city tour
TS-3：Visit to a bovine slaughterhouse and processing plant and city tour
TS-4：Northern suburbs and Delta cruise

8月31日（木）午前:
セッション5. 食肉の品質：消費者の要求
基調講演（セッション5）
・食肉の品質の一貫性（Dr. R. Miller：Texas A&M Univ., USA）
・官能検査のための新しい方法（Dr. W. J. Harper：The Ohio State Univ., USA）
セッション6. 食肉の安全性
基調講演（セッション6）
・食肉の安全性を増すための非伝統的な方法における微生物の利用：（Dr. M. P. Doyle：
セッション7．包装
基調講演（セッション7）
・効果的な包装の実際の例や食肉の包装におけるバイオセンサー技術：（Dr. J. Belcher：Sealed Air, Co., USA）
・可食性で生分解性包装フィルムやコーティング材に関する最近の情勢と可能性：（Dr. J. Acton：Clemson Univ., USA）
ラウンドテーブル，ディスカッション，コンクルージョン
コーヒーブレイク
ポスターセッション
昼食 午後：
基調講演（セッション6）
・肉食産業における予報的微生物学（Dr. J. Baranyi：Institute of Food Research, UK）
・リスク解析；理論と現実（Dr. P. Sterrenburg：TNO Nutrition and Food Research Institute, The Netherlands）
セッション8．食肉の科学と技術に関する教育と研究
基調講演（セッション8）
・肉食の科学と技術に関する基礎的知見に焦点をあてて（Dr. H. Ockerman：The Ohio State Univ., USA）
・インターネットによる肉食の科学の双方向講義（Dr. F. J. M. Smulders：Univ. Veterinary Medicine, Vienna, Austria）
ラウンドテーブル，ディスカッション，コンクルージョン
コーヒーブレイク
ポスターセッション

セッション9．肉質の必要条件
基調講演（セッション9）
・世界各国の市場で今日要求されている肉質と今後10年後の課題（Dr. A. Gordon：GIRAG S.A., Switzerland）
セッション10．製品の農場から消費者までの形跡
基調講演（セッション10）
・製品の農場から消費者までの形跡：（Dr. P. Cunningham：Trinity College, Ireland）
セッション11．食肉の生産と加工における動物福祉と環境の影響
基調講演（セッション11）
・消費者の関心事：（Dr. N. Gregory：MIRINZ Food Science and Technology, New Zealand）
ディスカッション，コンクルージョン
クロージングセレモニー

テクニカルツアー
テクニカルツアーは8月30日に行われた。4つのツアーが用意されたが、TS-2に参加したので、その内容について報告したい。訪問先は工場見学とオペラ劇場および都心のショッピングモールの見学であった。
見学した工場はRasic Groupの鶏の処理工場と同本社の加工品の製造工場の2箇所であった。いずれもブロノス・アイレスの郊外にあるために、出発は8時と早かった。
Rasic Groupはヨーロッパからの移民のRasicファミリーによって1958年に設立され、その後の努力でアルゼンチンの優良な食品会社に成長した企業である。二代目の現社長は背が高く、非常にハンサムな紳士であった。工場の案内は、米国に留学した経験もあり、若くて美しく、大変に聡明なお嬢さんが直接して下さった。会社は産卵鶏やブロイラーの生産からその処理、さらに鶏肉を利
牛乳には及びないが、鶏肉はアルゼンチンでも重要な食品素材であった。

その後、コロニアルな建築群が建ち並ぶヨーロッパ風の洗練された町並みの都心に帰ってきて、バリのオベラ座と並ぶ世界三大劇場の一つアルゼンチン劇場を訪れた。参加者はスペイン語で説明を受けるグループと英語で説明を聞くグループに別れて、きらびやかな衣装をまとった紳士、淑女で賑わったと思われる劇場内を見学した。現在も5月25日はシーズンの幕開けとなり、大統領も仕事を早々切り上げて見えなくなるのである。700個の電灯からなるシャンデリアのもとで、世界的に有名なオペラ、バレエ、オーケストラの演奏など年間100以上のプログラムが上演される。最後は、ホテルやレストラン、ビュッフェ、カフェ、バー、ギャラリー、本屋などが集まる最も華やかなエリアのサン・ニコラス地区のフロリダ通りにやってきて、それぞれショッピングの後に解散した。今回のツアーには、昨年の横浜の時と同じように、バスにはアルゼンチンの学会関係者が乗り込み、お世話頂いた。昨年の学会で、鎌倉の観光ツアーの学会関係の添乗員としてバスに乗り込んだ筆者は、ショッピング街での解散時に、人数確認をしてホッとしたような表情をみせた学会関係者を見て、主催者側の気持ちは同じだなあ、という感慨にうたれた。

国際食肉科学技術会議の今後の開催予定
本年度の第47回大会（2001年）はポーランドのクラコフで開催され、その後の予定は次の通りである。2002年の第48回はイタリアのローマ、2003年の第49回はブラジルのサン・パウロ、2004年の第50回はフィンランドのヘルシンキ、2005年の第51回はアメリカのボルチモア、2006年の第52回はアイルランドのダブリンまでの開催が決定している。
この会議は、「いかに食肉は食卓を多彩にするか」というオープニングレクチャーから始まった。昨年、横浜で開催された会議では日本の研究者が中心となって、食肉の機能性に関する研究を精力的に発表していたが、今回の会議では、家畜の生産と肉質、市場にとって要求される食肉加工や食肉の安全性についての演題が中心となっていたのが印象的であった。ヒトの栄養となり、美味しくて、しかも安全であることが食肉、食肉加工品としての必须条件かもしれない。今後、食肉のを持つ多様な生理活性機能が明らかになり、ヒトの健康ならだづくりに貢献できることを期待したい。

報告を終えるに当たり、南米の食肉および食肉製品の調査と第46回国際食肉科学技術会議への出席に際し、派遣助成をして下さった財団法人伊藤記念財団に対して感謝の意を表します。また、調査に多大なご協力を賜りました、農畜産業事業団の浅木様、玉井様ならびに金城様に心から厚くお礼申し上げます。
平成12年度研究調査助成一覧

<table>
<thead>
<tr>
<th>整理番号</th>
<th>研究調査のテーマ</th>
<th>代表研究者名</th>
<th>助成金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>研12</td>
<td>食肉摂取の神経細胞死阻止効果の研究</td>
<td>浜松医科大・医高田明和</td>
<td>円900,000</td>
</tr>
<tr>
<td>研18</td>
<td>L-カルニチンが培養心筋細胞の脂肪酸取り込みおよびATP産生に及ぼす影響</td>
<td>北海道大学大院西邑隆徳</td>
<td>円900,000</td>
</tr>
<tr>
<td>研28</td>
<td>カルニチン投与によるラットの脂質代謝およびそのmRNAへの影響について</td>
<td>帯広畜産大学福島道広</td>
<td>円800,000</td>
</tr>
<tr>
<td>研34</td>
<td>培養細胞系を用いた生理活性ペプチドの検索</td>
<td>佐賀大学・農長岡利</td>
<td>円600,000</td>
</tr>
<tr>
<td>研56</td>
<td>動物骨成分のACE阻害ペプチドの精製とその生理活性機能の検索</td>
<td>宮崎大学・農六車三治男</td>
<td>円850,000</td>
</tr>
<tr>
<td>研72</td>
<td>免疫機能に対する運動強度と食事肉タンパク質の影響</td>
<td>東京工大・農矢ヶ崎一三</td>
<td>円900,000</td>
</tr>
<tr>
<td>研88</td>
<td>ウシ肋軟骨抽出エキスの肌質改善効果に関する研究</td>
<td>北海道大学大院福永重治</td>
<td>円700,000</td>
</tr>
<tr>
<td>研106</td>
<td>脳卒中易発症高血圧ラットを用いた食肉の高血圧に与える影響の基礎研究</td>
<td>京都大学院家友幸男</td>
<td>円800,000</td>
</tr>
<tr>
<td>研123</td>
<td>超持続的運動時における脂質代謝からみた牛肉抽出成分の効果</td>
<td>東京学芸大渡辺雅之</td>
<td>円800,000</td>
</tr>
<tr>
<td>研125</td>
<td>ラットの生体内脂質分布と代謝に及ぼす牛肉エキスと運動との影響</td>
<td>九州大学院伊藤肇躬</td>
<td>円500,000</td>
</tr>
<tr>
<td>研152</td>
<td>畜産副生物の摂取によるアルカロイド肝障害の改善に関する研究</td>
<td>(財)食品薬品安全センター長尾哲二</td>
<td>円700,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>機能性（栄養価値）関連部門計</th>
<th>11件</th>
<th>円8,450,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>研20</td>
<td>密封包装詰加熱食肉製品におけるポリリチウム離の制御に関する研究</td>
<td>大阪府大院小崎俊司</td>
</tr>
<tr>
<td>研27</td>
<td>乾電池の製造とその性質について</td>
<td>帯広畜産大三上正幸</td>
</tr>
<tr>
<td>研51</td>
<td>高齢者の咀嚼機能を考慮した食肉加工品の製造方法に関する研究</td>
<td>日本女子大大越ひろ</td>
</tr>
<tr>
<td>研79</td>
<td>天然ケーシングの機能特性に及ぼす結び組織の影響</td>
<td>新潟大学・農西海理之</td>
</tr>
<tr>
<td>研116</td>
<td>米国における畜検査システム（ブタ）と畜肉・食鳥肉の衛生管理の検討</td>
<td>全国食肉衛生検査所協議会石川正順</td>
</tr>
<tr>
<td>研127</td>
<td>熟処理が牛骨格筋内膠原線維に及ぼす影響</td>
<td>九州大学院田畑正志</td>
</tr>
<tr>
<td>研134</td>
<td>ボーンマローボ（Bone Marrow）の呈味成分の研究</td>
<td>食肉の機能性研究会藤巻正生</td>
</tr>
<tr>
<td>研138</td>
<td>細胞および塩基による食肉・乳製品の汚染検出のための基礎的研究</td>
<td>麻布大・獣医池田輝雄</td>
</tr>
<tr>
<td>研141</td>
<td>食肉製品の発色に及ぼす乳ペプチドの促進効果</td>
<td>麻布大・獣医坂田亮一</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>製造技術関連部門計</th>
<th>9件</th>
<th>円5,800,000</th>
</tr>
</thead>
<tbody>
<tr>
<td>研15</td>
<td>雄マウスの生殖能力に及ぼすカルニチンの効果</td>
<td>北海道大学院森医</td>
</tr>
<tr>
<td>整理番号</td>
<td>研究調査のテーマ</td>
<td>代表研究者名</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>研 24</td>
<td>黒毛和種牛の下垂体卵黄体形成ホルモンサブニュートメントレンジ RNA の発情周期における変化</td>
<td>大阪府大学院川手憲俊</td>
</tr>
<tr>
<td>研 25</td>
<td>高齢母牛卵黄体模型を用いたウシの卵巣発育過程における卵黄体形成ホルモン（LH9）の役割について</td>
<td>帯広畜産大高木光博</td>
</tr>
<tr>
<td>研 29</td>
<td>ラット精巣における新規転写調節因子の機能解析</td>
<td>山口大・農本道栄一</td>
</tr>
<tr>
<td>研 38</td>
<td>排卵の原因解剖による牛の効率的胚移植に関する研究</td>
<td>酪農学園大堂地修</td>
</tr>
<tr>
<td>研 84</td>
<td>DNA分子プローブを利用したプタ品種の同定法の開発</td>
<td>東北大学院山本博章</td>
</tr>
<tr>
<td>研 102</td>
<td>成長ホルモンとインスリン様成長因子 I 分泌と反芻家畜の繁殖特性に関する研究 - 発情期と静止期における成長ホルモンとインスリン様成長因子 I の分泌特性について -</td>
<td>岩手大・農橋爪力</td>
</tr>
<tr>
<td>研 104</td>
<td>高倍体ニワトリを用いた動物の大きさを制御する因子の探索</td>
<td>岩手大・農加納聖</td>
</tr>
<tr>
<td>研 139</td>
<td>ピオチン欠乏と繁殖障害に関する検討</td>
<td>麻布大・獣医猪股智夫</td>
</tr>
<tr>
<td>研 144</td>
<td>流産を誘発する子宮内サイトカインの変動</td>
<td>山口大・農木曾康郎</td>
</tr>
<tr>
<td>研 161</td>
<td>ヒトペイントプロジェクトを用いたウシ体外受精胚の染色体異常検出に関する研究</td>
<td>宮城県農業短期小林仁</td>
</tr>
</tbody>
</table>

家畜増殖先端技術関連部門計 11件 7,900,000
<table>
<thead>
<tr>
<th>整理番号</th>
<th>研究調査のテーマ</th>
<th>代表研究者名</th>
<th>助成金額</th>
</tr>
</thead>
<tbody>
<tr>
<td>研115</td>
<td>食味テストと肉質分析による高品質豚肉質の品種間比較</td>
<td>宮城県畜産試験場佐藤康徳</td>
<td>800,000円</td>
</tr>
<tr>
<td>研131</td>
<td>給与飼料の質の変化が和牛成長ホルモンの分泌パターンに及ぼす影響</td>
<td>九州大学院後藤貴文</td>
<td>700,000円</td>
</tr>
<tr>
<td>研157</td>
<td>体脂肪蓄積調節機能を有する牛肉由来成分の検索の為の基礎的研究</td>
<td>神戸大・農長谷川信</td>
<td>600,000円</td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>效率的家畜産関連部門計</th>
<th>15件</th>
<th>11,100,000円</th>
</tr>
</thead>
<tbody>
<tr>
<td>研8</td>
<td>消化管内に生息するペロ毒素産性大腸菌の飼養学的動態コントロール</td>
<td>北海道大学小林泰男</td>
</tr>
<tr>
<td>研10</td>
<td>牛海綿状脳症診断に関する最近の進歩およびトランスジェニックマウス</td>
<td>東京大学小野寺節</td>
</tr>
<tr>
<td>研22</td>
<td>リポソーム型乾燥製品の作用、作用機序の研究</td>
<td>大阪府大学渡来仁</td>
</tr>
<tr>
<td>研62</td>
<td>肥育F1子牛への生菌製剤投与による増養および前後等のクショウシンオーシスト数への影響</td>
<td>宮崎大・農牧村進</td>
</tr>
<tr>
<td>研67</td>
<td>黒毛和牛生産農場における大腸菌O157根絶計画 II、抗菌物質および生菌製剤併用による発菌子牛からの志賀</td>
<td>宮崎大・農末吉益雄</td>
</tr>
<tr>
<td>研87</td>
<td>人畜共通感染症としての人のスピロヘータの家畜への感染性に関する研究</td>
<td>茨城大・農足立吉数</td>
</tr>
<tr>
<td>研136</td>
<td>イヌ・ネコの疾病と血漿中の微量元素に関する研究</td>
<td>麻布大・獣医政岡俊夫</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>家畜疾病・衛生関連部門計</th>
<th>7件</th>
<th>5,000,000円</th>
</tr>
</thead>
<tbody>
<tr>
<td>研12</td>
<td>畜産物の消費動向と流通業の販売戦略一協産直の事例一</td>
<td>麻布大・獣医大木茂</td>
</tr>
<tr>
<td>研13</td>
<td>短角牛産の産直与市場間地域の活性化</td>
<td>麻布大・獣医四方康行</td>
</tr>
<tr>
<td>研124</td>
<td>畜産における有機性地域資源の循環利用システムの構築</td>
<td>九州大学院甲斐諭</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>流通関連部門計</th>
<th>3件</th>
<th>2,000,000円</th>
</tr>
</thead>
<tbody>
<tr>
<td>研1</td>
<td>南米の食肉および食肉加工品の調査ならびに第46回国際食肉科学技術会議報告</td>
<td>宮崎大・農六車三治男</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>その他部門計</th>
<th>1件</th>
<th>750,000円</th>
</tr>
</thead>
</table>

| 合計 | 57件 | 41,000,000円 |

© The Ito Foundation
お わ り に

このたび、平成12年度「食肉に関する助成研究調査成果報告書（第19巻）」を発刊いたすことになりました。

本財団設立者故伊藤傳三創業社長が本書巻頭に述べられておりますご趣意によりまして、昭和57年7月に発足して以来20年が経過いたしました。今までに食肉並びにその関連領域の諸問題につきまして多くの研究機関の諸先生の約1,450編に及ぶ研究内容が報告されてまいりましたが、それらの成果が野界の発展に多少なりと寄与することができましたなら関係者一同望外の喜びに存じます。

ここに至るまで格段のご指導とご支援を賜りました関係省庁、伊藤研一理事長、各理事、評議員はじめ関係各位に厚く御礼申し上げます。さらに、第19巻に貴重な研究成果をご報告下さいました諸先生に深甚の謝意を表します。

また、去る9月には本財団主催の創立20周年記念講演会が開催されました。前経済企画庁長官で評論家・作家の塚屋太一先生をお迎えして、「消費拡大と日本の行く末」の演題で極めて貴重な示唆に富むご講演をいただきました。本講演会は第8回として開催されましたが、故伊藤きぬえ相談役のご偉業を頼絵させていただく事業でもございまして、食肉産業の一段の発展に多少とも貢献できますことを関係者一同強く願っている次第です。

アメリカにおける同時多発テロ、それに続くテロ勢力との対決、牛海綿状脳症（BSE）の発生等々と新世紀に入って次々と困難な問題に直面しているとき、上記講演会で知識社会を提唱されてきた塚屋先生は、わが国の「あるべき姿」や「かたち」にも言及され、極めて啓示的な内容と存じ、ことに厚く御礼申し上げます。

財団法人日本食肉消費総合センター（犬伏孝治理事長）の活動の一環として、「食肉と健康Q及びA—知っておきたい最新情報—」という冊子が「食肉と健康に関するフォーラム」委員会（座長藤巻正生先生）に設置された編集委員会によって取まとめられております。最新情報に基づいて「食肉摂取と長寿の関係」、「望

© The Ito Foundation

© The Ito Foundation
ましい栄養摂取のあり方をはじめ、「食肉摂取に焦点を合わせた食生活と各種
疾病予防との関連」、「食肉の栄養成分の働きき」など食肉摂取をめぐる広範な事
象が論述されております。現在の日本人の健康や長寿の達成に大きく貢献してい
る食肉の食品的価値はすさまでもございませんが、是非知りたいこと、あるいは
疑問に思っていることなどに対し、適切な解説と踏めて示唆に富むご教示をいた
だいております。

ＢＳＥ発生の問題は牛肉の消費とわが国の畜産関連領域に多大の影響を及ぼし
ているところです。長い伝統と努力によって育成されてきた牛肉産業は受
難のときでありますが、その食品素材としての価値は不動であります。このよう
な状況に際し、日本人の健康や長寿に大きく寄与している牛肉はじめ食肉につい
て正しい知識と理解を一段と深めていただきたいとの願いから、ここに敢えて日
本食肉消費総合センター発刊の上記冊子を紹介させていただく次第です。

牛肉消費の速やかな正常化並びにＢＳＥ問題の解決と終息を強く願う次第です。

本財団のため、今後とも益々お力添えを賜りますよう心よりお願い申し上げま
す。

本報告書の発刊に際し、取まとめなどにご尽力いただいた専門委員会委員各位
に厚く御礼申し上げます。

平成13年12月

専門委員会委員長
九州大学名誉教授
深澤 利 行
食肉に関する助成研究調査成果報告書
「Final Reports for Research Grants for Meat and Meat Products」
平成12年度 (Vol. 19)

2001年12月　発行

編集・発行　財団法人伊藤記念財団
THE ITO FOUNDATION
東京都港区虎ノ門5丁目3番20号　〒105-0001
仙石山アネックス501
5-3-20 Toranomon, Minato-ku,
(Sengokuyama-Annex 501)
TOKYO JAPAN　105-0001
TEL : 03（3434）1186
FAX : 03（3434）1256

印刷・製本　株式会社　三　敬　社

＜非売品：無断複製禁止＞
財団法人
伊藤記念財団